54. Differentiation of
vers
v
{\displaystyle \operatorname {vers} \ v}
.
Let
y
{\displaystyle \ y}
=
vers
v
{\displaystyle =\operatorname {vers} \ v\ }
.
By Trigonometry this may be written
y
{\displaystyle \ y}
=
1
−
cos
v
{\displaystyle =1-\cos v\ }
.
Differentiating,
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
sin
v
d
v
d
x
{\displaystyle =\sin v{\frac {dv}{dx}}}
.
XVII
∴
d
d
x
(
vers
v
)
{\displaystyle {\frac {d}{dx}}(\operatorname {vers} v)}
=
sin
v
d
v
d
x
{\displaystyle =\sin v{\frac {dv}{dx}}}
.
In the derivation of our formulas so far it has been necessary to apply the General Rule , p. 29 [§ 31] (i.e. the four steps), only for the following:
III
d
d
x
(
u
+
v
−
w
)
{\displaystyle {\frac {d}{dx}}(u+v-w)}
=
d
u
d
x
+
d
v
d
x
−
d
w
d
x
{\displaystyle ={\frac {du}{dx}}+{\frac {dv}{dx}}-{\frac {dw}{dx}}}
Algebraic sum.
V
d
d
x
(
u
v
)
{\displaystyle {\frac {d}{dx}}(uv)}
=
u
d
v
d
x
+
v
d
u
d
x
{\displaystyle =u{\frac {dv}{dx}}+v{\frac {du}{dx}}}
.
Product.
VII
d
d
x
(
u
v
)
{\displaystyle {\frac {d}{dx}}\left({\frac {u}{v}}\right)}
=
v
d
u
d
x
−
u
d
v
d
x
v
2
{\displaystyle ={\frac {v{\frac {du}{dx}}-u{\frac {dv}{dx}}}{v^{2}}}}
.
Quotient.
VIII
d
d
x
(
log
a
v
)
{\displaystyle {\frac {d}{dx}}(\log _{a}v)}
=
log
a
e
d
v
d
x
v
{\displaystyle =\log _{a}e{\frac {\frac {dv}{dx}}{v}}}
.
Logarithm.
XI
d
d
x
(
sin
v
)
{\displaystyle {\frac {d}{dx}}(\sin v)}
=
cos
v
d
v
d
x
{\displaystyle =\cos v{\frac {dv}{dx}}}
Sine.
XXV
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
d
y
d
v
⋅
d
v
d
x
{\displaystyle ={\frac {dy}{dv}}\cdot {\frac {dv}{dx}}}
.
Function of a function.
XXVI
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
d
x
d
y
{\displaystyle ={\frac {1}{\frac {dx}{dy}}}}
.
Inverse functions.
Not only do all the other formulas we have deduced depend on these, but all we shall deduce hereafter depend on them as well. Hence it follows that the derivation of the fundamental formulas for differentiation involves the calculation of only two limits of any difficulty, viz.,
lim
v
→
0
sin
v
1
{\displaystyle \lim _{v\to 0}{\frac {\sin v}{1}}}
=
1
{\displaystyle =1\ }
by § 22, p. 21
and
lim
v
→
0
(
1
+
v
)
1
v
{\displaystyle \lim _{v\to 0}(1+v)^{\frac {1}{v}}}
=
e
{\displaystyle =e\ }
.
By § 23, p. 22
EXAMPLES
Differentiate the following:
1.
y
=
s
i
n
a
x
2
{\displaystyle y=sinax^{2}\ }
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
cos
a
x
2
d
d
x
(
a
x
2
)
{\displaystyle =\cos ax^{2}{\frac {d}{dx}}(ax^{2})}
by XI
[
v
=
a
x
2
{\displaystyle v=ax^{2}}
.]
2.
y
=
tan
1
−
x
{\displaystyle y=\tan {\sqrt {1-x}}}
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
sec
2
1
−
x
d
d
x
(
1
−
x
)
1
2
{\displaystyle =\sec ^{2}{\sqrt {1-x}}{\frac {d}{dx}}(1-x)^{\frac {1}{2}}}
by XIII
[
v
=
1
−
x
{\displaystyle v={\sqrt {1-x}}}
.]
=
sec
2
1
−
x
⋅
1
2
(
1
−
x
)
−
1
2
(
−
1
)
{\displaystyle =\sec ^{2}{\sqrt {1-x}}\cdot {\frac {1}{2}}(1-x)^{-{\frac {1}{2}}}(-1)}
.
=
−
sec
2
1
−
x
2
1
−
x
{\displaystyle =-{\frac {\sec ^{2}{\sqrt {1-x}}}{2{\sqrt {1-x}}}}}
.
3.
y
=
cos
3
x
{\displaystyle y=\cos ^{3}x}
.
This may also be written,
y
{\displaystyle y}
=
(
cos
x
)
3
{\displaystyle =(\cos x)^{3}}
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
3
(
cos
x
)
2
d
d
x
(
cos
x
)
{\displaystyle =3(\cos x)^{2}{\frac {d}{dx}}(\cos x)}
by VI
[
v
=
cos
x
{\displaystyle v=\cos x}
and
n
=
3
{\displaystyle n=3}
.]
=
3
cos
2
x
(
−
sin
x
)
{\displaystyle =3\cos ^{2}x(-\sin x)}
by XII
=
−
3
sin
x
cos
2
x
{\displaystyle =-3\sin x\cos ^{2}x}
4.
y
=
sin
n
x
sin
n
x
{\displaystyle y=\sin nx\sin ^{n}x}
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
sin
n
x
d
d
x
(
sin
x
)
n
+
sin
n
x
d
d
x
(
sin
n
x
)
{\displaystyle =\sin nx{\frac {d}{dx}}(\sin x)^{n}+\sin ^{n}x{\frac {d}{dx}}(\sin nx)}
by V
[
v
=
sin
n
x
{\displaystyle v=\sin nx}
and
v
=
sin
n
x
{\displaystyle v=\sin ^{n}x}
.]
=
sin
n
x
⋅
n
(
sin
x
)
n
−
1
d
d
x
(
sin
x
)
+
sin
n
x
cos
n
x
d
d
x
(
n
x
)
{\displaystyle =\sin nx\cdot n(\sin x)^{n-1}{\frac {d}{dx}}(\sin x)+\sin ^{n}x\cos nx{\frac {d}{dx}}(nx)}
by VI and XI
=
n
sin
n
x
⋅
sin
n
−
1
x
cos
x
+
n
sin
n
x
cos
n
x
{\displaystyle =n\sin nx\cdot \sin ^{n-1}x\cos x+n\sin ^{n}x\cos nx}
=
n
sin
n
−
1
x
(
sin
n
x
cos
x
+
cos
n
x
sin
x
)
{\displaystyle =n\sin ^{n-1}x(\sin nx\cos x+\cos nx\sin x)}
=
n
sin
n
−
1
x
sin
(
n
+
1
)
x
{\displaystyle =n\sin ^{n-1}x\sin(n+1)x}
.
5.
y
=
sec
a
x
{\displaystyle y=\sec ax}
.
Ans.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
a
sec
a
x
tan
a
x
{\displaystyle a\sec ax\tan ax}
.
6.
y
=
tan
(
a
x
+
b
)
{\displaystyle y=\tan(ax+b)}
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
a
sec
2
(
a
x
+
b
)
{\displaystyle =a\sec ^{2}(ax+b)}
.
7.
s
=
cos
3
a
x
{\displaystyle s=\cos 3ax}
.
d
s
d
x
{\displaystyle {\frac {ds}{dx}}}
=
−
3
a
sin
3
a
x
{\displaystyle =-3a\sin 3ax}
.
8.
s
=
cot
(
2
t
2
+
3
)
{\displaystyle s=\cot(2t^{2}+3)}
.
d
s
d
t
{\displaystyle {\frac {ds}{dt}}}
=
−
4
t
csc
2
(
2
t
2
+
3
)
{\displaystyle =-4t\csc ^{2}(2t^{2}+3)}
.
9.
f
(
y
)
=
sin
2
y
cos
y
{\displaystyle f(y)=\sin 2y\cos y}
.
f
′
(
y
)
{\displaystyle f'(y)}
=
2
cos
2
y
cos
y
−
sin
2
y
sin
y
{\displaystyle =2\cos 2y\cos y-\sin 2y\sin y}
.
10.
F
(
x
)
=
cot
2
5
x
{\displaystyle F(x)=\cot ^{2}5x}
F
′
(
x
)
{\displaystyle F'(x)}
=
−
10
cot
5
x
csc
2
5
x
{\displaystyle =-10\cot 5x\csc ^{2}5x}
.
11.
F
(
θ
)
=
tan
θ
−
θ
{\displaystyle F(\theta )=\tan \theta -\theta }
.
F
′
(
θ
)
{\displaystyle F'(\theta )}
=
tan
2
θ
{\displaystyle =\tan ^{2}\theta }
.
12.
f
(
ϕ
)
=
ϕ
sin
ϕ
+
cos
ϕ
{\displaystyle f(\phi )=\phi \sin \phi +\cos \phi }
f
′
(
ϕ
)
{\displaystyle f'(\phi )}
=
ϕ
cos
ϕ
{\displaystyle =\phi \cos \phi }
.
13.
f
(
t
)
=
sin
3
t
cos
t
{\displaystyle f(t)=\sin ^{3}t\cos t}
f
′
(
t
)
{\displaystyle f'(t)}
=
sin
2
t
(
3
cos
t
−
sin
2
t
)
{\displaystyle =\sin ^{2}t(3\cos ^{t}-\sin ^{2}t)}
.
14.
r
=
a
cos
2
θ
{\displaystyle r=a\cos 2\theta }
.
d
r
d
θ
{\displaystyle {\frac {dr}{d\theta }}}
=
−
2
a
sin
2
θ
{\displaystyle =-2a\sin 2\theta }
.
15.
d
d
x
sin
2
x
=
sin
2
x
{\displaystyle {\frac {d}{dx}}\sin ^{2}x=\sin 2x}
.
16.
d
d
x
cos
3
x
2
=
−
6
x
cos
2
x
2
sin
x
2
{\displaystyle {\frac {d}{dx}}\cos ^{3}x^{2}=-6x\cos ^{2}x^{2}\sin x^{2}}
.
17.
d
d
t
csc
t
2
2
=
−
t
csc
t
2
2
cot
t
2
2
{\displaystyle {\frac {d}{dt}}\csc {\frac {t^{2}}{2}}=-t\csc {\frac {t^{2}}{2}}\cot {\frac {t^{2}}{2}}}
.
18.
d
d
s
a
cos
2
s
=
−
a
sin
2
s
cos
2
s
{\displaystyle {\frac {d}{ds}}a{\sqrt {\cos 2s}}=-{\frac {a\sin 2s}{\sqrt {\cos 2s}}}}
.
19.
d
d
θ
a
(
1
−
cos
θ
)
=
a
s
i
n
θ
{\displaystyle {\frac {d}{d\theta }}a(1-\cos \theta )=asin\theta }
.
20.
d
d
x
(
log
cos
x
)
=
−
tan
x
{\displaystyle {\frac {d}{dx}}(\log \cos x)=-\tan x}
.
21.
d
d
x
(
log
tan
x
)
=
2
sin
2
x
{\displaystyle {\frac {d}{dx}}(\log \tan x)={\frac {2}{\sin 2x}}}
.
22.
d
d
x
(
log
sin
2
x
)
=
2
cot
x
{\displaystyle {\frac {d}{dx}}(\log \sin ^{2}x)=2\cot x}
.
23.
d
d
t
cos
a
t
=
a
t
2
sin
a
t
{\displaystyle {\frac {d}{dt}}\cos {\frac {a}{t}}={\frac {a}{t^{2}}}\sin {\frac {a}{t}}}
.
24.
d
d
θ
sin
1
θ
2
=
−
2
θ
3
cos
1
θ
2
{\displaystyle {\frac {d}{d\theta }}\sin {\frac {1}{\theta ^{2}}}=-{\frac {2}{\theta ^{3}}}\cos {\frac {1}{\theta ^{2}}}}
.
25.
d
d
x
e
sin
x
=
e
sin
x
cos
x
{\displaystyle {\frac {d}{dx}}e^{\sin x}=e^{\sin x}\cos x}
.
26.
d
d
x
sin
(
log
x
)
=
cos
(
log
x
)
x
{\displaystyle {\frac {d}{dx}}\sin(\log x)={\frac {\cos(\log x)}{x}}}
.
27.
d
d
x
tan
(
log
x
)
=
sec
2
(
log
x
)
x
{\displaystyle {\frac {d}{dx}}\tan(\log x)={\frac {\sec ^{2}(\log x)}{x}}}
.
28.
d
d
x
a
sin
3
θ
3
=
a
sin
2
θ
3
cos
θ
3
{\displaystyle {\frac {d}{dx}}a\sin ^{3}{\frac {\theta }{3}}=a\sin ^{2}{\frac {\theta }{3}}\cos {\frac {\theta }{3}}}
.
29.
d
d
α
sin
(
cos
α
)
=
−
sin
α
cos
(
cos
α
)
{\displaystyle {\frac {d}{d\alpha }}\sin(\cos \alpha )=-\sin \alpha \cos(\cos \alpha )}
.
30.
d
d
x
tan
x
−
1
sec
x
=
sin
x
+
cos
x
{\displaystyle {\frac {d}{dx}}{\frac {\tan x-1}{\sec x}}=\sin x+\cos x}
.
31.
y
=
log
1
+
sin
x
1
−
sin
x
{\displaystyle y=\log {\sqrt {\frac {1+\sin x}{1-\sin x}}}}
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
cos
x
{\displaystyle ={\frac {1}{\cos x}}}
.
32.
y
=
log
tan
(
π
4
+
x
2
)
{\displaystyle y=\log \tan \left({\frac {\pi }{4}}+{\frac {x}{2}}\right)}
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
cos
x
{\displaystyle ={\frac {1}{\cos x}}}
.
33.
f
(
x
)
=
sin
(
x
+
a
)
cos
(
x
−
a
)
{\displaystyle f(x)=\sin(x+a)\cos(x-a)}
f
′
(
x
)
{\displaystyle f'(x)}
=
cos
2
x
{\displaystyle =\cos 2x}
.
34.
y
=
a
tan
n
x
{\displaystyle y=a^{\tan nx}}
.
y
′
{\displaystyle y'}
=
n
a
tan
n
x
sec
2
n
x
log
a
{\displaystyle =na^{\tan nx}\sec ^{2}nx\log a}
.
35.
y
=
e
cos
x
sin
x
{\displaystyle y=e^{\cos x}\sin x}
.
y
′
{\displaystyle \ y'}
=
e
cos
x
(
cos
x
−
sin
2
x
)
{\displaystyle =e^{\cos x}(\cos x-\sin ^{2}x)\ }
.
36.
y
=
e
x
log
sin
x
{\displaystyle y=e^{x}\log \sin x}
.
y
′
{\displaystyle y'}
=
e
x
(
cot
x
+
log
sin
x
)
{\displaystyle =e^{x}(\cot x+\log \sin x)}
.
37. Differentiate the following functions:
(a)
d
d
x
sin
5
x
2
{\displaystyle {\frac {d}{dx}}\sin 5x^{2}}
.
(f)
d
d
x
csc
(
log
x
)
{\displaystyle {\frac {d}{dx}}\csc(\log x)}
.
(k)
d
d
t
e
a
−
b
cos
t
{\displaystyle {\frac {d}{dt}}e^{a-b\cos t}}
.
(b)
d
d
x
cos
(
a
−
b
x
)
{\displaystyle {\frac {d}{dx}}\cos(a-bx)}
.
(g)
d
d
x
sin
3
2
x
{\displaystyle {\frac {d}{dx}}\sin ^{3}2x}
(l)
d
d
t
sin
t
3
cos
2
t
3
{\displaystyle {\frac {d}{dt}}\sin {\frac {t}{3}}\cos ^{2}{\frac {t}{3}}}
.
(c)
d
d
x
tan
a
x
b
{\displaystyle {\frac {d}{dx}}\tan {\frac {ax}{b}}}
.
(h)
d
d
x
cos
2
(
log
x
)
{\displaystyle {\frac {d}{dx}}\cos ^{2}(\log x)}
.
(m)
d
d
θ
cot
b
θ
2
{\displaystyle {\frac {d}{d\theta }}\cot {\frac {b}{\theta ^{2}}}}
.
(d)
d
d
x
cot
a
x
{\displaystyle {\frac {d}{dx}}\cot {\sqrt {ax}}}
.
(i)
d
d
x
tan
2
1
−
x
2
{\displaystyle {\frac {d}{dx}}\tan ^{2}{\sqrt {1-x^{2}}}}
.
(n)
d
d
ϕ
1
+
cos
2
ϕ
{\displaystyle {\frac {d}{d\phi }}{\sqrt {1+\cos ^{2}\phi }}}
.
(e)
d
d
x
sec
e
3
x
{\displaystyle {\frac {d}{dx}}\sec e^{3x}}
.
(j)
d
d
x
log
(
sin
2
a
x
)
{\displaystyle {\frac {d}{dx}}\log(\sin ^{2}ax)}
.
(o)
d
d
s
log
1
−
2
sin
2
s
{\displaystyle {\frac {d}{ds}}\log {\sqrt {1-2\sin ^{2}s}}}
.
38.
d
d
x
(
x
n
e
sin
x
)
=
x
n
−
1
e
sin
x
(
n
+
x
cos
x
)
{\displaystyle {\frac {d}{dx}}(x^{n}e^{\sin x})=x^{n-1}e^{\sin x}(n+x\cos x)}
.
39.
d
d
x
(
e
a
x
cos
m
x
)
=
e
a
x
(
a
cos
m
x
−
m
sin
m
x
)
{\displaystyle {\frac {d}{dx}}(e^{ax}\cos mx)=e^{ax}(a\cos mx-m\sin mx)}
.
40.
f
(
θ
)
=
1
+
cos
θ
1
−
cos
θ
{\displaystyle f(\theta )={\frac {1+\cos \theta }{1-\cos \theta }}}
.
f
′
(
θ
)
{\displaystyle \ f'(\theta )}
=
−
2
sin
θ
(
1
−
cos
θ
)
2
{\displaystyle =\ -{\frac {2\sin \theta }{(1-\cos \theta )^{2}}}}
.
41.
f
(
ϕ
)
=
e
a
ϕ
(
a
sin
ϕ
−
cos
ϕ
)
a
2
+
1
{\displaystyle f(\phi )={\frac {e^{a\phi }(a\sin \phi -\cos \phi )}{a^{2}+1}}}
.
f
′
(
ϕ
)
{\displaystyle \ f'(\phi )}
=
e
a
ϕ
sin
ϕ
{\displaystyle =\ e^{a\phi }\sin \phi }
.
42.
f
(
s
)
=
(
s
cot
s
)
2
{\displaystyle \ f(s)=(s\cot s)^{2}}
.
f
′
(
s
)
{\displaystyle \ f'(s)}
=
2
s
cot
s
(
cot
s
−
s
csc
2
s
)
{\displaystyle =\ 2s\cot s(\cot s-s\csc ^{2}s)}
.
43.
r
=
1
3
tan
3
θ
−
tan
θ
+
θ
{\displaystyle r={\frac {1}{3}}\tan ^{3}\theta -\tan \theta +\theta }
.
d
r
d
θ
{\displaystyle {\frac {dr}{d\theta }}}
=
tan
4
θ
{\displaystyle =\tan ^{4}\theta }
.
44.
y
=
x
sin
x
{\displaystyle y=x^{\sin x}\ }
.
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
x
sin
x
(
sin
x
x
+
log
x
cos
x
)
{\displaystyle =\ x^{\sin x}\left({\frac {\sin x}{x}}+\log x\cos x\right)}
.
45.
y
=
(
sin
x
)
x
{\displaystyle y=(\sin x)^{x}\ }
.
y
′
{\displaystyle \ y'}
=
(
sin
x
)
x
[
log
sin
x
+
x
cot
x
]
{\displaystyle =\ (\sin x)^{x}[\log \sin x+x\cot x]}
.
46.
y
=
(
sin
x
)
tan
x
{\displaystyle y=(\sin x)^{\tan x}\ }
.
y
′
{\displaystyle \ y'}
=
(
sin
x
)
tan
x
(
1
+
sec
2
x
log
sin
x
)
{\displaystyle =\ (\sin x)^{\tan x}(1+\sec ^{2}x\log \sin x)}
.
47. Prove
d
d
x
cos
v
=
−
sin
v
d
v
d
x
{\displaystyle {\frac {d}{dx}}\cos v=-\sin v{\frac {dv}{dx}}}
, using the General Rule .
48. Prove
d
d
x
cot
v
=
−
csc
2
v
d
v
d
x
{\displaystyle {\frac {d}{dx}}\cot v=-\csc ^{2}v{\frac {dv}{dx}}}
by replacing
cot
v
{\displaystyle \cot v}
by
cos
c
sin
v
{\displaystyle {\frac {\cos c}{\sin v}}}
.
55. Differentiation of
arcsin
v
{\displaystyle \arcsin v}
.
Let
y
{\displaystyle \ y}
=
arcsin
v
{\displaystyle =\arcsin \ v}
;[ 1]
then
v
{\displaystyle \ v}
=
sin
y
{\displaystyle =\sin \ y}
.
Differentiating with respect to
y
{\displaystyle y}
by XI ,
d
v
d
y
{\displaystyle {\frac {dv}{dy}}}
=
cos
y
{\displaystyle =\cos \ y}
;
therefore
d
y
d
v
{\displaystyle {\frac {dy}{dv}}}
=
1
cos
y
{\displaystyle ={\frac {1}{\cos y}}}
.
By (C ), p. 46 [§ 43]
But since
v
{\displaystyle v}
is a function of
x
{\displaystyle x}
, this may be substituted in
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
d
y
d
v
⋅
d
v
d
x
{\displaystyle ={\frac {dy}{dv}}\cdot {\frac {dv}{dx}}}
(A ), p. 45 [§ 42]
giving
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
cos
y
⋅
d
v
d
x
{\displaystyle ={\frac {1}{\cos y}}\cdot {\frac {dv}{dx}}}
.
=
1
1
−
v
2
d
v
d
x
{\displaystyle ={\frac {1}{\sqrt {1-v^{2}}}}{\frac {dv}{dx}}}
.
[
cos
y
=
1
−
sin
2
y
=
1
−
v
2
{\displaystyle [\cos y={\sqrt {1-\sin ^{2}y}}={\sqrt {1-v^{2}}}}
, the positive sign of the radical being taken, since
cos
y
{\displaystyle \cos y}
is positive for all values of
y
{\displaystyle y}
between
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
and
π
2
{\displaystyle {\frac {\pi }{2}}}
inclusive.]
XVIII
∴
d
d
x
(
arcsin
v
)
{\displaystyle {\frac {d}{dx}}(\arcsin v)}
=
d
v
d
x
1
−
v
2
{\displaystyle ={\frac {\frac {dv}{dx}}{\sqrt {1-v^{2}}}}}
.
56. Differentiation of
arccos
v
{\displaystyle \arccos v}
.
Let
y
{\displaystyle \ y}
=
arccos
v
{\displaystyle =\arccos \ v}
;[ 2]
then
y
{\displaystyle \ y}
=
cos
y
{\displaystyle =\cos \ y}
.
Differentiating with respect to
y
{\displaystyle y}
by XII ,
d
v
d
y
{\displaystyle {\frac {dv}{dy}}}
=
−
sin
y
{\displaystyle =-\sin \ y}
.
therefore
d
y
d
v
{\displaystyle {\frac {dy}{dv}}}
=
−
1
sin
y
{\displaystyle =-{\frac {1}{\sin y}}}
.
By (C ), p. 46 [§ 43]
But since
v
{\displaystyle v}
is a function of
x
{\displaystyle x}
, this may be substituted in the formula
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
d
y
d
v
⋅
d
v
d
x
{\displaystyle ={\frac {dy}{dv}}\cdot {\frac {dv}{dx}}}
,
(A ), p. 45 [§ 42]
giving
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
−
1
sin
y
⋅
d
v
d
x
{\displaystyle =-{\frac {1}{\sin y}}\cdot {\frac {dv}{dx}}}
=
−
1
1
−
v
2
d
v
d
x
{\displaystyle =-{\frac {1}{\sqrt {1-v^{2}}}}{\frac {dv}{dx}}}
.
[
sin
y
=
1
−
cos
2
y
=
1
−
v
2
{\displaystyle \sin y={\sqrt {1-\cos ^{2}y}}={\sqrt {1-v^{2}}}}
, the plus sign of the radical being taken, since
sin
y
{\displaystyle \sin y}
is positive for all values of y between 0 and π inclusive.]
XIX
∴
d
d
x
(
arccos
v
)
{\displaystyle {\frac {d}{dx}}(\arccos v)}
=
−
d
v
d
x
1
−
v
2
{\displaystyle =-{\frac {\frac {dv}{dx}}{\sqrt {1-v^{2}}}}}
.
57. Differentiation of
arctan
v
{\displaystyle \arctan v}
.
Let
y
{\displaystyle \ y}
=
arctan
v
{\displaystyle =\ \arctan v}
;[ 3]
then
y
{\displaystyle \ y}
=
tan
y
{\displaystyle =\ \tan y}
.
Differentiating with respect to
y
{\displaystyle y}
by XIV ,
d
v
d
y
{\displaystyle {\frac {dv}{dy}}}
=
sec
2
y
{\displaystyle =\ \sec ^{2}y}
;
therefore
d
y
d
v
{\displaystyle {\frac {dy}{dv}}}
=
1
sec
2
y
{\displaystyle ={\frac {1}{\sec ^{2}y}}}
.
By (C ), p. 46 [§ 43]
But since
v
{\displaystyle v}
is a function of
x
{\displaystyle x}
, this may be substituted in the formula
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
d
y
d
v
⋅
d
v
d
x
{\displaystyle ={\frac {dy}{dv}}\cdot {\frac {dv}{dx}}}
,
(A ), p. 45 [§ 42]
giving
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
sec
2
y
⋅
d
v
d
x
{\displaystyle ={\frac {1}{\sec ^{2}y}}\cdot {\frac {dv}{dx}}}
=
1
1
+
v
2
d
v
d
x
{\displaystyle ={\frac {1}{1+v^{2}}}{\frac {dv}{dx}}}
.
[
sec
2
y
=
1
+
tan
2
y
=
1
+
v
2
{\displaystyle \sec ^{2}y=1+\tan ^{2}y=1+v^{2}}
]
XX
∴
d
d
x
(
arctan
v
)
{\displaystyle {\frac {d}{dx}}(\arctan v)}
=
d
v
d
x
1
+
v
2
{\displaystyle ={\frac {\frac {dv}{dx}}{1+v^{2}}}}
58. Differentiation of
arccot
u
{\displaystyle \operatorname {arccot} u}
. [ 4]
Following the method of the last section, we get
XXI
d
d
x
(
arccot
v
)
=
−
d
v
d
x
1
+
v
2
{\displaystyle {\frac {d}{dx}}(\operatorname {arccot} v)=-{\frac {\frac {dv}{dx}}{1+v^{2}}}}
.
59. Differentiation of
arcsec
u
{\displaystyle \operatorname {arcsec} u}
.
Let
y
{\displaystyle \ y}
=
arcsec
v
{\displaystyle =\ \operatorname {arcsec} v}
;[ 5]
then
v
{\displaystyle \ v}
=
sec
y
{\displaystyle =\ \sec y}
.
Differentiating with respect to
y
{\displaystyle y}
by IV ,
d
v
d
y
{\displaystyle {\frac {dv}{dy}}}
=
sec
y
tan
y
{\displaystyle =\ \sec y\tan y}
;
therefore
d
y
d
v
{\displaystyle {\frac {dy}{dv}}}
=
1
sec
y
tan
y
{\displaystyle ={\frac {1}{\sec y\tan y}}}
By (C ), p. 46 [§ 43]
But since
v
{\displaystyle v}
is a function of
x
{\displaystyle x}
, this may be substituted in the formula
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
d
y
d
v
⋅
d
v
d
x
{\displaystyle ={\frac {dy}{dv}}\cdot {\frac {dv}{dx}}}
,
(A ), p. 45 [§ 42]
giving
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
sec
y
tan
y
d
v
d
x
{\displaystyle ={\frac {1}{\sec y\tan y}}{\frac {dv}{dx}}}
=
1
v
v
2
−
1
d
v
d
x
{\displaystyle ={\frac {1}{v{\sqrt {v^{2}-1}}}}{\frac {dv}{dx}}}
.
[
sec
y
=
v
{\displaystyle \sec y=v}
, and
tan
y
=
sec
y
−
1
=
v
2
−
1
{\displaystyle \tan y={\sqrt {\sec y-1}}={\sqrt {v^{2}-1}}}
, the plus sign of the radical being taken, since
tan
y
{\displaystyle \tan y}
is positive for an values of
y
{\displaystyle y}
between 0 and
π
2
{\displaystyle {\frac {\pi }{2}}}
and between
−
π
{\displaystyle -\pi }
and
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
, including 0 and
−
π
{\displaystyle -\pi }
].
XXII
∴
d
d
x
(
arcsec
v
)
{\displaystyle {\frac {d}{dx}}(\operatorname {arcsec} v)}
=
d
v
d
x
v
v
2
−
1
{\displaystyle ={\frac {\frac {dv}{dx}}{v{\sqrt {v^{2}-1}}}}}
.
60. Differentiation of
arccsc
v
{\displaystyle \operatorname {arccsc} v}
. [ 6]
Let
y
{\displaystyle \ y}
=
arccsc
v
{\displaystyle =\ \operatorname {arccsc} v}
;
then
v
{\displaystyle \ v}
=
csc
y
{\displaystyle =\ \csc y}
.
Differentiating with respect to
y
{\displaystyle y}
by XVI and following the method of the last section, we get
XXIII
d
d
x
(
arccsc
v
)
{\displaystyle {\frac {d}{dx}}(\operatorname {arccsc} v)}
=
−
d
v
d
x
v
v
2
−
1
{\displaystyle =-{\frac {\frac {dv}{dx}}{v{\sqrt {v^{2}-1}}}}}
.
61. Differentiation of
arcvers
v
{\displaystyle \operatorname {arcvers} v}
.
Let
y
{\displaystyle \ y}
=
arcvers
v
{\displaystyle =\operatorname {arcvers} v}
;[ 7]
then
v
{\displaystyle \ v}
=
vers
y
{\displaystyle =\operatorname {vers} y}
.
Differentiating with respect to
y
{\displaystyle y}
by XVII ,
d
v
d
y
{\displaystyle {\frac {dv}{dy}}}
=
sin
y
{\displaystyle =\ \sin y}
;
therefore
d
y
d
v
{\displaystyle {\frac {dy}{dv}}}
=
1
sin
y
{\displaystyle ={\frac {1}{\sin y}}}
By (C ), p. 46 [§ 43]
But since
v
{\displaystyle v}
is a function of
x
{\displaystyle x}
, this may be substituted in the formula
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
d
y
d
v
⋅
d
v
d
x
{\displaystyle ={\frac {dy}{dv}}\cdot {\frac {dv}{dx}}}
(A ), p. 45 [§ 42]
giving
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
=
1
sin
y
⋅
d
v
d
x
{\displaystyle ={\frac {1}{\sin y}}\cdot {\frac {dv}{dx}}}
=
1
2
v
−
v
2
d
v
d
x
{\displaystyle ={\frac {1}{\sqrt {2v-v^{2}}}}{\frac {dv}{dx}}}
[
sin
y
=
1
−
cos
2
y
=
1
−
(
1
−
vers
y
)
2
=
2
v
−
v
2
{\displaystyle \sin y={\sqrt {1-\cos ^{2}y}}={\sqrt {1-(1-\operatorname {vers} y)^{2}}}={\sqrt {2v-v^{2}}}}
, the plus sign of the radical being taken, since
sin
y
{\displaystyle \sin y}
is positive for all values of
y
{\displaystyle y}
between 0 and
π
{\displaystyle \pi }
inclusive.]
XXIV
∴
d
d
x
(
arcvers
v
)
{\displaystyle {\frac {d}{dx}}(\operatorname {arcvers} v)}
=
d
v
d
x
2
v
−
v
2
{\displaystyle ={\frac {\frac {dv}{dx}}{\sqrt {2v-v^{2}}}}}
.
↑ Graph of arc sin v It should be remembered that this function is defined only for values of
v
{\displaystyle v}
between -1 and +1 inclusive and that
y
{\displaystyle y}
(the function) is many-valued, there being infinitely many arcs whose sines will equal
v
{\displaystyle v}
. Thus, in the figure (the locus of
y
=
arcsin
v
{\displaystyle y=\arcsin v}
), when
v
=
O
M
,
y
=
M
P
1
,
M
P
2
,
M
P
3
,
⋯
,
M
Q
1
M
Q
2
,
⋯
{\displaystyle v=OM,y=MP_{1},MP_{2},MP_{3},\cdots ,MQ_{1}MQ_{2},\cdots }
. In the above discussion, in order to make the function single-valued; only values of
y
{\displaystyle y}
between
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
and
π
2
{\displaystyle {\frac {\pi }{2}}}
inclusive (points on arc
Q
O
P
{\displaystyle QOP}
) are considered; that is, the arc of smallest numerical value whose sine is
v
{\displaystyle v}
.
↑ Graph of arc cos v This function is defined only for values of
v
{\displaystyle v}
between -1 and +1 inclusive, and is many-valued. In the figure (the locus of
y
=
arccos
v
{\displaystyle y=\arccos v}
), when
v
=
O
M
,
y
=
M
P
1
,
M
P
2
,
⋯
,
M
Q
1
M
Q
2
,
⋯
{\displaystyle v=OM,y=MP_{1},MP_{2},\cdots ,MQ_{1}MQ_{2},\cdots }
. In order to make the function single-valued, only values of
y
{\displaystyle y}
between 0 and π inclusive are considered; that is,
y
{\displaystyle y}
the smallest positive arc whose cosine is
v
{\displaystyle v}
. Hence we confine ourselves to arc QP of the graph.
↑ Graph of arc tan v This function is defined for all values of
v
{\displaystyle v}
, and is many-valued, as is clearly shown by its graph. In order to make it single-valued, only values of
y
{\displaystyle y}
between
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
and
π
2
{\displaystyle {\frac {\pi }{2}}}
are considered; that is, the arc of smallest numerical value whose tangent is
v
{\displaystyle v}
(branch
A
O
E
{\displaystyle AOE}
).
↑ Fig. a. Graph of arc cot v This function is defined for all values of
v
{\displaystyle v}
, and is many-valued, as is seen from its graph (Fig. a ). In order to make it single-valued, only values of
y
{\displaystyle y}
between 0 and
π
{\displaystyle \pi }
are considered; that is, the smallest positive arc whose cotangent is
v
{\displaystyle v}
. Hence we confine ourselves to branch AB .
↑ Fig b. Graph of arc sec v This function is defined for all values of
v
{\displaystyle v}
except those lying between -1 and +1, and is seen to be many-valued. To make the function single-valued,
y
{\displaystyle y}
is taken as the arc of smallest numerical value whose secant is
v
{\displaystyle v}
. This means that if
v
{\displaystyle v}
is positive, we confine ourselves to points on arc AB (Fig. b),
y
{\displaystyle y}
taking on values between 0 and
π
2
{\displaystyle {\frac {\pi }{2}}}
(0 may be included); and if
v
{\displaystyle v}
is negative, we confine ourselves to points on arc DC ,
y
{\displaystyle y}
taking on values between
−
π
{\displaystyle -\pi }
and
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
(
−
π
{\displaystyle -\pi }
may be included).
↑ Graph of y = arc csc v This function is defined for all values of
v
{\displaystyle v}
except those lying between -1 and +1, and is seen to be many-valued. To make the function single-valued,
y
{\displaystyle y}
is taken as the arc of smallest numerical value whose cosecant is
v
{\displaystyle v}
. This means that if
v
{\displaystyle v}
is positive, we confine ourselves to points on the arc AB (Fig. a),
y
{\displaystyle y}
taking on values between 0 and
π
2
{\displaystyle {\frac {\pi }{2}}}
(
π
2
{\displaystyle {\frac {\pi }{2}}}
may be included); and if
v
{\displaystyle v}
is negative, we confine ourselves to points on the arc CD ,
y
{\displaystyle y}
taking on values between
−
π
{\displaystyle -\pi }
and
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
(
−
π
2
{\displaystyle -{\frac {\pi }{2}}}
may be included).
↑
Defined only for values of
v
{\displaystyle v}
between 0 and 2 inclusive, and is many-valued. To make the function continuous,
y
{\displaystyle y}
is taken as the smallest positive arc whose versed sine is
v
{\displaystyle v}
; that is,
y
{\displaystyle y}
lies between 0 and
π
{\displaystyle \pi }
inclusive. Hence we confine ourselves to arc
O
P
{\displaystyle OP}
of the graph (Fig. a ).