Jump to content

Experimental researches in electricity/Relation by measure of common and voltaic electricity

From Wikisource
487844Experimental researches in electricity — Relation by measure of common and voltaic electricityMichael Faraday

§ 8. _Relation by Measure of common and voltaic Electricity._[A]

 [A] In further illustration of this subject see 855-873 in Series
 VII.--_Dec. 1838._


361. Believing the point of identity to be satisfactorily established, I next endeavoured to obtain a common measure, or a known relation as to quantity, of the electricity excited by a machine, and that from a voltaic pile; for the purpose not only of confirming their identity (378.), but also of demonstrating certain general principles (366, 377, &c.), and creating an extension of the means of investigating and applying the chemical powers of this wonderful and subtile agent.

362. The first point to be determined was, whether the same absolute quantity of ordinary electricity, sent through a galvanometer, under different circumstances, would cause the same deflection of the needle. An arbitrary scale was therefore attached to the galvanometer, each division of which was equal to about 4°, and the instrument arranged as in former experiments (296.). The machine (290.), battery (291.), and other parts of the apparatus were brought into good order, and retained for the time as nearly as possible in the same condition. The experiments were alternated so as to indicate any change in the condition of the apparatus and supply the necessary corrections.

363. Seven of the battery jars were removed, and eight retained for present use. It was found that about forty turns would fully charge the eight jars. They were then charged by thirty turns of the machine, and discharged through the galvanometer, a thick wet string, about ten inches long, being included in the circuit. The needle was immediately deflected five divisions and a half, on the one side of the zero, and in vibrating passed as nearly as possible through five divisions and a half on the other side.

364. The other seven jars were then added to the eight, and the whole fifteen charged by thirty turns of the machine. The Henley's electrometer stood not quite half as high as before; but when the discharge was made through the galvanometer, previously at rest, the needle immediately vibrated, passing _exactly_ to the same division as in the former instance. These experiments with eight and with fifteen jars were repeated several times alternately with the same results.

365. Other experiments were then made, in which all the battery was used, and its charge (being fifty turns of the machine,) sent through the galvanometer: but it was modified by being passed sometimes through a mere wet thread, sometimes through thirty-eight inches of thin string wetted by distilled water, and sometimes through a string of twelve times the thickness, only twelve inches in length, and soaked in dilute acid (298.). With the thick string the charge passed at once; with the thin string it occupied a sensible time, and with the thread it required two or three seconds before the electrometer fell entirely down. The current therefore must have varied extremely in intensity in these different cases, and yet the deflection of the needle was sensibly the same in all of them. If any difference occurred, it was that the thin string and thread caused greatest deflection; and if there is any lateral transmission, as M. Colladon says, through the silk in the galvanometer coil, it ought to have been so, because then the intensity is lower and the lateral transmission less.

366. Hence it would appear that _if the same absolute quantity of electricity pass through the galvanometer, whatever may be its intensity, the dejecting force upon the magnetic needle is the same._

367. The battery of fifteen jars was then charged by sixty revolutions of the machine, and discharged, as before, through the galvanometer. The deflection of the needle was now as nearly as possible to the eleventh division, but the graduation was not accurate enough for me to assert that the arc was exactly double the former arc; to the eye it appeared to be so. The probability is, that _the deflecting force of an electric current is directly proportional to the absolute quantity of electricity passed_, at whatever intensity that electricity may be[A].

 [A] The great and general value of the galvanometer, as an actual
 measure of the electricity passing through it, either continuously or
 interruptedly, must be evident from a consideration of these two
 conclusions. As constructed by Professor Ritchie with glass threads
 (see Philosophical Transactions, 1830, p. 218, and Quarterly Journal
 of Science, New Series, vol. i. p.29.), it apparently seems to leave
 nothing unsupplied in its own department.

368. Dr. Ritchie has shown that in a case where the intensity of the electricity remained the same, the deflection of the magnetic needle was directly as the quantity of electricity passed through the galvanometer[A]. Mr. Harris has shown that the _heating_ power of common electricity on metallic wires is the same for the same quantity of electricity whatever its intensity might have previously been[B].

 [A] Quarterly Journal of Science, New Series, vol. i. p. 33.
 [B] Plymouth Transactions, page 22.

369. The next point was to obtain a _voltaic_ arrangement producing an effect equal to that just described (367.). A platina and a zinc wire were passed through the same hole of a draw-plate, being then one eighteenth of an inch in diameter; these were fastened to a support, so that their lower ends projected, were parallel, and five sixteenths of an inch apart. The upper ends were well-connected with the galvanometer wires. Some acid was diluted, and, after various preliminary experiments, that adopted as a standard which consisted of one drop strong sulphuric acid in four ounces distilled water. Finally, the time was noted which the needle required in swinging either from right to left or left to right: it was equal to seventeen beats of my watch, the latter giving one hundred and fifty in a minute. The object of these preparations was to arrange a voltaic apparatus, which, by immersion in a given acid for a given time, much less than that required by the needle to swing in one direction, should give equal deflection to the instrument with the discharge of ordinary electricity from the battery (363. 364.); and a new part of the zinc wire having been brought into position with the platina, the comparative experiments were made.

370. On plunging the zinc and platina wires five eighths of an inch deep into the acid, and retaining them there for eight beats of the watch, (after which they were quickly withdrawn,) the needle was deflected, and continued to advance in the same direction some time after the voltaic apparatus had been removed from the acid. It attained the five-and-a-half division, and then returned swinging an equal distance on the other side. This experiment was repeated many times, and always with the same result.

371. Hence, as an approximation, and judging from _magnetic force_ only at present (376.), it would appear that two wires, one of platina and one of zinc, each one eighteenth of an inch in diameter, placed five sixteenths of an inch apart and immersed to the depth of five eighths of an inch in acid, consisting of one drop oil of vitriol and four ounces distilled water, at a temperature about 60°, and connected at the other extremities by a copper wire eighteen feet long and one eighteenth of an inch thick (being the wire of the galvanometer coils), yield as much electricity in eight beats of my watch, or in 8/150ths of a minute, as the electrical battery charged by thirty turns of the large machine, in excellent order (363. 364.). Notwithstanding this apparently enormous disproportion, the results are perfectly in harmony with those effects which are known to be produced by variations in the intensity and quantity of the electric fluid.

372. In order to procure a reference to _chemical action_, the wires were now retained immersed in the acid to the depth of five eighths of an inch, and the needle, when stationary, observed; it stood, as nearly as the unassisted eye could decide, at 5-1/3 division. Hence a permanent deflection to that extent might be considered as indicating a constant voltaic current, which in eight beats of my watch (369.) could supply as much electricity as the electrical battery charged by thirty turns of the machine.

373. The following arrangements and results are selected from many that were made and obtained relative to chemical action. A platina wire one twelfth of an inch in diameter, weighing two hundred and sixty grains, had the extremity rendered plain, so as to offer a definite surface equal to a circle of the same diameter as the wire; it was then connected in turn with the conductor of the machine, or with the voltaic apparatus (369.), so as always to form the positive pole, and at the same time retain a perpendicular position, that it might rest, with its whole weight, upon the test paper to be employed. The test paper itself was supported upon a platina spatula, connected either with the discharging train (292.), or with the negative wire of the voltaic apparatus, and it consisted of four thicknesses, moistened at all times to an equal degree in a standard solution of hydriodate of potassa (316.).

374. When the platina wire was connected with the prime conductor of the machine, and the spatula with the discharging train, ten turns of the machine had such decomposing power as to produce a pale round spot of iodine of the diameter of the wire; twenty turns made a much darker mark, and thirty turns made a dark brown spot penetrating to the second thickness of the paper. The difference in effect produced by two or three turns, more or less, could be distinguished with facility.

375. The wire and spatula were then connected with the voltaic apparatus (369.), the galvanometer being also included in the arrangement; and, a stronger acid having been prepared, consisting of nitric acid and water, the voltaic apparatus was immersed so far as to give a permanent deflection of the needle to the 5-1/3 division (372.), the fourfold moistened paper intervening as before[A]. Then by shifting the end of the wire from place to place upon the test paper, the effect of the current for five, six, seven, or any number of the beats of the watch (369.) was observed, and compared with that of the machine. After alternating and repeating the experiments of comparison many times, it was constantly found that this standard current of voltaic electricity, continued for eight beats of the watch, was equal, in chemical effect, to thirty turns of the machine; twenty-eight revolutions of the machine were sensibly too few.

 [A] Of course the heightened power of the voltaic battery was
 necessary to compensate for the bad conductor now interposed.

376. Hence it results that both in _magnetic deflection_ (371.) and in _chemical force_, the current of electricity of the standard voltaic battery for eight beats of the watch was equal to that of the machine evolved by thirty revolutions.

377. It also follows that for this case of electro-chemical decomposition, and it is probable for all cases, that the _chemical power, like the magnetic force_ (36.), _is in direct proportion to the absolute quantity of electricity_ which passes.

378. Hence arises still further confirmation, if any were required, of the identity of common and voltaic electricity, and that the differences of intensity and quantity are quite sufficient to account for what were supposed to be their distinctive qualities.

379. The extension which the present investigations have enabled me to make of the facts and views constituting the theory of electro-chemical decomposition, will, with some other points of electrical doctrine, be almost immediately submitted to the Royal Society in another series of these Researches.

_Royal Institution, 15th Dec. 1832._

Note.--I am anxious, and am permitted, to add to this paper a correction of an error which I have attributed to M. Ampère the first series of these Experimental Researches. In referring to his experiment on the induction of electrical currents (78.), I have called that a disc which I should have called a circle or a ring. M. Ampère used a ring, or a very short cylinder made of a narrow plate of copper bent into a circle, and he tells me that by such an arrangement the motion is very readily obtained. I have not doubted that M. Ampère obtained the motion he described; but merely mistook the kind of mobile conductor used, and so far I described his _experiment_ erroneously.

In the same paragraph I have stated that M. Ampère says the disc turned "to take a position of equilibrium exactly as the spiral itself would have turned had it been free to move"; and further on I have said that my results tended to invert the sense of the proposition "stated by M. Ampère, _that a current of electricity tends to put the electricity of conductors near which it passes in motion in the same direction._" M. Ampère tells me in a letter which I have just received from him, that he carefully avoided, when describing the experiment, any reference to the direction of the induced current; and on looking at the passages he quotes to me, I find that to be the case. I have therefore done him injustice in the above statements, and am anxious to correct my error.

But that it may not be supposed I lightly wrote those passages, I will briefly refer to my reasons for understanding them in the sense I did. At first the experiment failed. When re-made successfully about a year afterwards, it was at Geneva in company with M.A. De la Rive: the latter philosopher described the results[A], and says that the plate of copper bent into a circle which was used as the mobile conductor "sometimes advanced between the two branches of the (horse-shoe) magnet, and sometimes was repelled, _according_ to the direction of the current in the surrounding conductors."

 [A] Bibliothèque Universelle, xxi. p. 48.

I have been in the habit of referring to Demonferrand's _Manuel d'Electricité Dynamique_, as a book of authority in France; containing the general results and laws of this branch of science, up to the time of its publication, in a well arranged form. At p. 173, the author, when describing this experiment, says, "The mobile circle turns to take a position of equilibrium as a conductor would do in which the current moved in the _same direction_ as in the spiral;" and in the same paragraph he adds, "It is therefore proved _that a current of electricity tends to put the electricity of conductors, near which it passes, in motion in the same direction._" These are the words I quoted in my paper (78.).

Le Lycée of 1st of January, 1832, No. 36, in an article written after the receipt of my first unfortunate letter to M. Hachette, and before my papers were printed, reasons upon the direction of the induced currents, and says, that there ought to be "an elementary current produced in the same direction as the corresponding portion of the producing current." A little further on it says, "therefore we ought to obtain currents, moving in the _same direction_, produced upon a metallic wire, either by a magnet or a current. M. Ampère _was so thouroughly persuaded that such ought to be the direction of the currents by influence_, that he neglected to assure himself of it in his experiment at Geneva."

It was the precise statements in Demonferrand's Manuel, agreeing as they did with the expression in M. De la Rive's paper, (which, however, I now understand as only meaning that when the inducing current was changed, the motion of the mobile circle changed also,) and not in discordance with anything expressed by M. Ampère himself where he speaks of the experiment, which made me conclude, when I wrote the paper, that what I wrote was really his avowed opinion; and when the Number of the Lycée referred to appeared, which was before my paper was printed, it could excite no suspicion that I was in error.

Hence the mistake into which I unwittingly fell. I am proud to correct it and do full justice to the acuteness and accuracy which, as far as I can understand the subjects, M. Ampère carries into all the branches of philosophy which he investigates.

Finally, my note to (79.) says that the Lycée, No. 36. "mistakes the erroneous results of MM. Fresnel and Ampère for true ones," &c. &c. In calling M. Ampère's results erroneous, I spoke of the results described in, and referred to by the Lycée itself; but _now_ that the expression of the direction of the induced current is to be separated, the term _erroneous_ ought no longer to be attached to them.

April 29, 1833. M.F.]