Jump to content

Heroes of the Telegraph/Chapter 1

From Wikisource
Heroes of the Telegraph (1891)
by John Munro
Chapter 1: The Origin of the Telegraph
3813268Heroes of the Telegraph — Chapter 1: The Origin of the Telegraph1891John Munro


HEROES OF THE TELEGRAPH.


CHAPTER I.

THE ORIGIN OF THE TELEGRAPH.

The history of an invention, whether of science or art, may be compared to the growth of an organism such as a tree. The wind, or the random visit of a bee, unites the pollen in the flower, the green fruit forms and ripens to the perfect seed, which, on being planted in congenial soil, takes root and flourishes. Even so from the chance combination of two facts in the human mind, a crude idea springs, and after maturing into a feasible plan is put in practice under favourable conditions, and so develops. These processes are both subject to a thousand accidents which are inimical to their achievement. Especially is this the case when their object is to produce a novel species, or a new and great invention like the telegraph. It is then a question of raising, not one seedling, but many, and modifying these in the lapse of time.

Similarly the telegraph is not to be regarded as the work of any one mind, but of many, and during a long course of years. Because at length the final seedling is obtained, are we to overlook the antecedent varieties from which it was produced, and without which it could not have existed? Because one inventor at last succeeds in putting the telegraph in operation, are we to neglect his predecessors, whose attempts and failures were the steps by which he mounted to success? All who have extended our knowledge of electricity, or devised a telegraph, and familiarised the public mind with the advantages of it, are deserving of our praise and gratitude, as well as he who has entered into their labours, and by genius and perseverance won the honours of being the first to introduce it.

Let us, therefore, trace in a rapid manner the history of the electric telegraph from the earliest times.

The sources of a river are lost in the clouds of the mountain, but it is usual to derive its waters from the lakes or springs which are its fountain-head. In the same way the origins of our knowledge of electricity and magnetism are lost in the mists of antiquity, but there are two facts which have come to be regarded as the starting-points of the science. It was known to the ancients at least 600 years before Christ, that a piece of amber when excited by rubbing would attract straws, and that a lump of lodestone had the property of drawing iron. Both facts were probably ascertained by chance. Humboldt informs us that he saw an Indian child of the Orinoco rubbing the seed of a trailing plant to make it attract the wild cotton; and, perhaps, a prehistoric tribesman of the Baltic or the plains of Sicily found in the yellow stone he had polished the mysterious power of collecting dust. A Greek legend tells us that the lodestone was discovered by Magnes, a shepherd who found his crook attracted by the rock.

However this may be, we are told that Thales of Miletus attributed the attractive properties of the amber and the lodestone to a soul within them. The name Electricity is derived from elektron, the Greek for amber, and Magnetism from Magnes, the name of the shepherd, or, more likely, from the city of Magnesia, in Lydia, where the stone occurred.

These properties of amber and lodestone appear to have been widely known. The Persian name for amber is káhrubá, attractor of straws, and that for lodestone ahang-rubá attractor of iron. In the old Persian romance, The Loves of Majnoon and Leila, the lover sings—

'She was as amber, and I but as straw:
She touched me, and I shall ever cling to her.'

The Chinese philosopher, Kuopho, who flourished in the fourth century, writes that, 'the attraction of a magnet for iron is like that of amber for the smallest grain of mustard seed. It is like a breath of wind which mysteriously penetrates through both, and communicates itself with the speed of an arrow.'[1] Other electrical effects were also observed by the ancients. Classical writers, as Homer, Cæsar, and Plutarch, speak of flames on the points of javelins and the tips of masts. They regarded them as manifestations of the Deity, as did the soldiers of the Mahdi lately in the Soudan. It is recorded of Servius Tullus, the sixth king of Rome, that his hair emitted sparks on being combed; and that sparks came from the body of Walimer, a Gothic chief, who lived in the year 415 A.D.

During the dark ages the mystical virtues of the lodestone drew more attention than those of the more precious amber, and interesting experiments were made with it. The Romans knew that it could attract iron at some distance through an intervening fence of wood, brass, or stone. One of their experiments was to float a needle on a piece of cork, and make it follow a lodestone held in the hand. This arrangement was perhaps copied from the compass of the Phoenician sailors, who buoyed a lodestone and observed it set towards the north. There is reason to believe that the magnet was employed by the priests of the Oracle in answering questions. We are told that the Emperor Valerius, while at Antioch in 370 A.D., was shown a floating needle which pointed to the letters of the alphabet when guided by the directive force of a lodestone. It was also believed that this effect might be produced although a stone wall intervened, so that a person outside a house or prison might convey intelligence to another inside.

This idea was perhaps the basis of the sympathetic telegraph of the Middle Ages, which is first described in the Magiæ Naturalis of John Baptista Porta, published at Naples in 1558. It was supposed by Porta and others after him that two similar needles touched by the same lodestone were sympathetic, so that, although far apart, if both were freely balanced, a movement of one was imitated by the other. By encircling each balanced needle with an alphabet, the sympathetic telegraph was obtained. Although based on error, and opposed by Cabeus and others, this fascinating notion continued to crop up even to the days of Addison. It was a prophetic shadow of the coming invention. In the Scepsis Scientifica, published in 1665, Joseph Glanvil wrote, 'to confer at the distance of the Indies by sympathetic conveyances may be as usual to future times as to us in literary correspondence.'[2]

Dr. Gilbert, physician to Queen Elizabeth, by his systematic researches, discovered the magnetism of the earth, and laid the foundations of the modern science of electricity and magnetism. Otto von Guericke, burgomaster of Magdeburg, invented the electrical machine for generating large quantities of the electric fire. Stephen Gray, a pensioner of the Charterhouse, conveyed the fire to a distance along a line of pack thread, and showed that some bodies conducted electricity, while others insulated it. Dufay proved that there were two qualities of electricity, now called positive and negative, and that each kind repelled the like, but attracted the unlike. Von Kleist, a cathedral dean of Kamm, in Pomerania, or at all events Cuneus, a burgher, and Muschenbroek, a professor of Leyden, discovered the Leyden jar for holding a charge of electricity; and Franklin demonstrated the identity of electricity and lightning.

The charge from a Leyden jar was frequently sent through a chain of persons clasping hands, or a length of wire with the earth as part of the circuit. This experiment was made by Joseph Franz, of Vienna, in 1746, and Dr. Watson, of London, in 1747; while Franklin ignited spirits by a spark which had been sent across the Schuylkill river by the same means. But none of these men seem to have grasped the idea of employing the fleet fire as a telegraph.

The first suggestion of an electric telegraph on record is that published by one 'C. M.' in the Scots Magazine for February 17, 1753. The device consisted in running a number of insulated wires between two places, one for each letter of the alphabet. The wires were to be charged with electricity from a machine one at a time, according to the letter it represented. At its far end the charged wire was to attract a disc of paper marked with the corresponding letter, and so the message would be spelt. 'C. M.' also suggested the first acoustic telegraph, for he proposed to have a set of bells instead of the letters, each of a different tone, and to be struck by the spark from its charged wire.

The identity of 'C. M.,' who dated his letter from Renfrew, has not been established beyond a doubt. There is a tradition of a clever man living in Renfrew at that time, and afterwards in Paisley, who could 'licht a room wi' coal reek (smoke), and mak' lichtnin' speak and write upon the wa'.' By some he was thought to be a certain Charles Marshall, from Aberdeen; but it seems likelier that he was a Charles Morrison, of Greenock, who was trained as a surgeon, and became connected with the tobacco trade of Glasgow. In Renfrew he was regarded as a kind of wizard, and he is said to have emigrated to Virginia, where he died.

In the latter half of the eighteenth century, many other suggestions of telegraphs based on the known properties of the electric fire were published; for example, by Joseph Bozolus, a Jesuit lecturer of Rome, in 1767; by Odier, a Geneva physicist, in 1773, who states in a letter to a lady, that he conceived the idea on hearing a casual remark, while dining at Sir John Pringle's, with Franklin, Priestley, and other great geniuses. 'I shall amuse you, perhaps, in telling you,' he says, 'that I have in my head certain experiments by which to enter into conversation with the Emperor of Mogol or of China, the English, the French, or any other people of Europe. … You may intercommunicate all that you wish at a distance of four or five thousands leagues in less than half an hour. Will that suffice you for glory?'

George Louis Lesage, in 1782, proposed a plan similar to 'C. M.'s,' using underground wires. An anonymous correspondent of the Journal de Paris for May 30, 1782, suggested an alarm bell to call attention to the message. Lomond, of Paris, devised a telegraph with only one wire; the signals to be read by the peculiar movements of an attracted pith-ball, and Arthur Young witnessed his plan in action, as recorded in his diary. M. Chappe, the inventor of the semaphore, tried about the year 1790 to introduce a synchronous electric telegraph, and failed.

Don Francisco Salvá y Campillo, of Barcelona, in 1795, proposed to make a telegraph between Barcelona and Mataro, either overhead or underground, and he remarks of the wires, 'at the bottom of the sea their bed would be ready made, and it would be an extraordinary casualty that should disturb them.' In Salvá's telegraph, the signals were to be made by illuminating letters of tinfoil with the spark. Volta's great invention of the pile in 1800 furnished a new source of electricity, better adapted for the telegraph, and Salvá was apparently the first to recognise this, for, in the same year, he proposed to use it and interpret the signals by the twitching of a frog's limb, or the decomposition of water.

In 1802, Jean Alexandre, a reputed natural son of Jean Jacques Rousseau, brought out a télégraphe intime, or secret telegraph, which appears to have been a step-by-step apparatus. The inventor concealed its mode of working, but it was believed to be electrical, and there was a needle which stopped at various points on a dial. Alexandre stated that he had found out a strange matter or power which was, perhaps generally diffused, and formed in some sort the soul of the universe. He endeavoured to bring his invention under the eye of the First Consul, but Napoleon referred the matter to Delambre, and would not see it. Alexandre was born at Paris, and served as a carver and gilder at Poictiers; then sang in the churches till the Revolution suppressed this means of livelihood. He rose to influence as a Commissary-general, then retired from the army and became an inventor. His name is associated with a method of steering balloons, and a filter for supplying Bordeaux with water from the Garonne. But neither of these plans appear to have been put in practice, and he died at Angouleme, leaving his widow in extreme poverty.

Sömmering, a distinguished Prussian anatomist, in 1809 brought out a telegraph worked by a voltaic battery, and making signals by decomposing water. Two years later it was greatly simplified by Schweigger, of Halle; and there is reason to believe that but for the discovery of electro-magnetism by Oersted, in 1824, the chemical telegraph would have come into practical use.

In 1806, Ralph Wedgwood submitted a telegraph based on frictional electricity to the Admiralty, but was told that the semaphore was sufficient for the country. In a pamphlet he suggested the establishment of a telegraph system with public offices in different centres. Francis Ronalds, in 1816, brought a similar telegraph of his invention to the notice of the Admiralty, and was politely informed that 'telegraphs of any kind are now wholly unnecessary.'

In 1826-7, Harrison Gray Dyar, of New York, devised a telegraph in which the spark was made to stain the signals on moist litmus paper by decomposing nitric acid; but he had to abandon his experiments in Long Island and fly the country, because of a writ which charged him with a conspiracy for carrying on secret communication. In 1830 Hubert Recy published an account of a system of Télétatodydaxie, by which the electric spark was to ignite alcohol and indicate the signals of a code.

But spark or frictional electric telegraphs were destined to give way to those actuated by the voltaic current, as the chemical mode of signalling was superseded by the electro-magnet. In 1820 the separate courses of electric and magnetic science were united by the connecting discovery of Oersted, who found that a wire conveying a current had the power of moving a compass-needle to one side or the other according to the direction of the current.

La Place, the illustrious mathematician, at once saw that this fact could be utilised as a telegraph, and Ampère, acting on his suggestion, published a feasible plan. Before the year was out, Schweigger, of Halle, multiplied the influence of the current on the needle by coiling the wire about it. Ten years later, Ritchie improved on Ampère's method, and exhibited a model at the Royal Institution, London. About the same time, Baron Pawel Schilling, a Russian nobleman, still further modified it, and the Emperor Nicholas decreed the erection of a line from Cronstadt to St. Petersburg, with a cable in the Gulf of Finland but Schilling died in 1837, and the project was never realised.

In 1833-5 Professors Gauss and Weber constructed a telegraph between the physical cabinet and the Observatory of the University of Göttingen. At first they used the voltaic pile, but abandoned it in favour of Faraday's recent discovery that electricity could be generated in a wire by the motion of a magnet. The magnetic key with which the message was sent Produced by its action an electric current which, after traversing the line, passed through a coil and deflected a suspended magnet to the right or left, according to the direction of the current. A mirror attached to the suspension magnified the movement of the needle, and indicated the signals after the manner of the Thomson mirror galvanometer. This telegraph, which was large and clumsy, was nevertheless used not only for scientific, but for general correspondence. Steinheil, of Munich, simplified it, and added an alarm in the form of a bell.

In 1836, Steinheil also devised a recording telegraph, in which the movable needles indicated the message by marking dots and dashes with printer's ink on a ribbon of travelling paper, according to an artificial code in which the fewest signs were given to the commonest letters in the German language. With this apparatus the message was registered at the rate of six words a minute. The early experimenters, as we have seen, especially Salvá, had utilised the ground as the return part of the circuit; and Salvá had proposed to use it on his telegraph, but Steinheil was the first to demonstrate its practical value. In trying, on the suggestion of Gauss, to employ the rails of the Nürenberg to Fürth railway as the conducting line for a telegraph in the year 1838, he found they would not serve; but the failure led him to employ the earth as the return half of the circuit.

In 1837, Stratingh, of Groninque, Holland, devised a telegraph in which the signals were made by electro-magnets actuating the hammers of two gongs or bells of different tone; and M. Amyot invented an automatic sending key in the nature of a musical box. From 1837-8, Edward Davy, a Devonshire surgeon, exhibited a needle telegraph in London, and proposed one based on the discovery of Arago, that a piece of soft iron is temporarily magnetised by the passage of an electric current through a coil surrounding it. This principle was further applied by Morse in his electro-magnetic printing telegraph. Davy was a prolific inventor, and also sketched out a telegraph in which the gases evolved from water which was decomposed by the current actuated a recording pen. But his most valuable discovery was the 'relay,' that is to say, an auxiliary device by which a current too feeble to indicate the signals could call into play a local battery strong enough to make them. Davy was in a fair way of becoming one of the fathers of the working telegraph, when his private affairs obliged him to emigrate to Australia, and leave the course open to Cooke and Wheatstone.

  1. Lodestone was probably known in China before the Christian era.
  2. The Rosicrucians also believed that if two persons transplanted pieces of their flesh into each other, and tattooed the grafts with letters, a sympathetic telegraph could be established by pricking the letters.