Jump to content

Home-Made Toys for Boys and Girls/Chapter 10

From Wikisource
4681719Home-Made Toys for Boys and Girls — HOME-MADE CLOCKWORK TOYS1915Albert Neely Hall

CHAPTER X
HOME-MADE CLOCKWORK TOYS

The toys shown opposite page go are a few of the many mechanical toys which can be operated by clockwork, and they are easy to make, too, requiring no more mechanical ability than is possessed by the average boy old enough to handle the simplest of tools.

Generally it is easy to find an old clock somewhere about the house, and a clock which has been discarded simply because it has become worthless as a timekeeper is perfectly good for operating these toys, provided the mainspring is in working order. It is not necessary to have a set of works for each toy, for they are so quickly fastened in place that but a minute is required to transfer the works from one toy to another.

Before commencing work upon the toys, get together

The Other Necessary Materials. These will consist of cigar boxes, cardboard, cotton or silk spools, glue, brads, and a few pieces from the woodpile, with one or two additional articles which are mentioned later on. Brads ⅝ inch and 1 inch in length should be purchased for fastening the framework of the toys together, and the cigar boxes should be about 8 inches by 4 inches by 2 inches in size. Remove the paper from the boxes as described on page 175.

To Prepare the Clockwork for use, remove it from its case, detach the hands and face, and pry off the small wheel pivoted directly under the hands; this wheel is shown at A in Fig. 139. Remove also the balance-wheel

Fig. 139.—How the Clockwork Motor is Fastened to the Cigar-Box Cover. (This Box has been cut down to the Proper Length for the Ferris Wheel.)
Fig. 139.—How the Clockwork Motor is Fastened to the Cigar-Box Cover. (This Box has been cut down to the Proper Length for the Ferris Wheel.)

Fig. 139.—How the Clockwork Motor is Fastened to the Cigar-Box Cover.
(This Box has been cut down to the Proper Length for the Ferris Wheel.)

B (Fig. 139) and the lever C pivoted next to it, to increase the speed of the remaining wheels.

Fasten the clockwork motor for

The Merry-go-round shown in Fig. 135 to the cover of a cigar box, as illustrated in Figs. 136 and 139, boring holes through the cover with a gimlet for the pivot ends on the back of the works to set into. Remove the lower flange from a spool (D, Fig. 139) and fasten the spool on to the central pivot of the clockwork in the position formerly occupied by wheel A. The hole in the spool will be too large for the pivot and must be filled up with sealing-wax. To do this, hold a piece of sealing-wax above the spool and melt it with a lighted match, allowing it to drip into the hole until the latter is about half full, then press the wax down with the end of a match until it is compact, smooth it off on the bottom of the spool, and make a dent in it with a pencil to indicate the exact center of the hole. Heat the end of the pivot with a lighted match, and press it into the dent in the wax, being careful in doing so to get the spool straight upon the pivot. Cut a hole through the bottom of the cigar box belonging to the cover to which you have attached the works, for spool D to project through (Fig. 139).

To Make the Standard for the merry-go-round, cut four strips of wood 8 inches long, and fasten one to each corner of the cigar box, turning the bottom side of the box up; then cut a piece of ½-inch board 10 inches square, locate its center F by drawing diagonal lines from corner to corner as shown in Fig. 140, bore a 1-inch hole through it at this point for spool D (Fig. 136), and then nail the box to the center of the board as shown in Fig. 140.

The Tent should be laid out upon heavy white paper as shown in Fig. 141. After describing a circle with a
Fig. 135. A Merry-Go-Round.
Fig. 135. A Merry-Go-Round.

Fig. 135. A Merry-Go-Round.

Fig. 136. A Clockwork Motor.
Fig. 136. A Clockwork Motor.

Fig. 136. A Clockwork Motor.

Fig. 137. A Ferris Wheel.
Fig. 137. A Ferris Wheel.

Fig. 137. A Ferris Wheel.

Fig. 138. The "Flying Airships."
Fig. 138. The "Flying Airships."

Fig. 138. The "Flying Airships."

radius of 9 inches, describe another circle within it with a radius of 7½ inches, this inner circle (shown by dotted lines in the diagram) being drawn for a guide in fastening
Fig. 140.—Plan of Top of Standard for Merry-go-round.
Fig. 140.—Plan of Top of Standard for Merry-go-round.

Fig. 140.—Plan of Top of Standard for Merry-go-round.

Fig. 141.—Pattern for Tent of Merry-go-round.
Fig. 141.—Pattern for Tent of Merry-go-round.

Fig. 141.—Pattern for Tent of Merry-go-round.

Fig. 142.—The Tent ready to be Fastened upon a Tent-Pole.
Fig. 142.—The Tent ready to be Fastened upon a Tent-Pole.

Fig. 142.—The Tent ready to be Fastened upon a Tent-Pole.

the tent upon its tent-poles. Cut out the tent along the outer circle, and from it cut a triangular piece about the size of that included between lines KL and ML in the diagram. Cover the under edge of KL and the upper edge of ML with glue, lap KL over to about NL, and rub down the edges with a cloth to make as neat a joint between the pieces as possible (Fig. 142). Bore a hole through each corner of the standard top (G, H, I, and J, Fig. 140), then cut four sticks 7 inches long, sandpaper them until smooth, and glue them into these holes for The Tent-Poles. When the tent has dried, tack it to the ends of the poles, being careful to make it set evenly upon them; cut a scalloped border out of red or blue paper and paste it to the edge all around as shown in Fig. 135, and stick a small flag in the peak.

Fig. 143.—Full-size Pattern for the Horses of the Merry-go-round.
Fig. 143.—Full-size Pattern for the Horses of the Merry-go-round.

Fig. 143.—Full-size Pattern for the Horses of the Merry-go-round.

The Horses. A full-size pattern for these is shown in Fig. 143. Take a piece of tracing-paper or any thin transparent paper, and place it over the pattern and make an exact copy; then rub a soft lead-pencil over the other side of the paper, turn the paper over with the blackened side down, and transfer the drawing six times upon a piece of lightweight cardboard. Paint the horses with water-colors, using the pattern as a guide for shading and marking them, then cut them out with a sharp knife or a pair of scissors.

Figure 144 shows the pattern for

Fig. 144.—Pattern for the Merry-go-round Sleighs.
Fig. 144.—Pattern for the Merry-go-round Sleighs.

Fig. 144.—Pattern for the Merry-go-round Sleighs.

The Sleighs. Draw this out upon a piece of cardboard, cut it out and fold along the dotted lines, then turn in the flaps and glue them to the dashboard and to the back. Cut two seats by the pattern given, bend down the flaps and glue them to the sides of the sleigh, and make the back for the front seat like that on the back seat (Fig. 145). Then make another sleigh similar to the one just completed, for two are required for the merry-go-round. Paint the sleighs green or yellow with trimmings of a lighter shade.

Figure 136 shows

The Shafts upon which the horses and sleighs are mounted. Cut them 5½ inches long, whittle them round, and rub them down with sandpaper. The shafts are fastened in a spool hub which has five holes bored in it (E, Fig. 136); bore the holes with a gimlet or small drill, marking them off first with a pencil to be sure of getting them spaced at equal distances. Point the ends of the shafts and glue them into the holes in the hub, then connect this spool to spool D with a piece of a lead-pencil 2 inches long (Fig. 136).

Fig. 145.—A Completed Sleigh showing Attachment to Shaft.
Fig. 145.—A Completed Sleigh showing Attachment to Shaft.

Fig. 145.—A Completed Sleigh showing Attachment to Shaft.

To fasten the horses to the shafts, punch a hole through three of them at X (Fig. 143) and slip each one over a shaft, then tack the other three horses to the ends of these shafts at the point X. To fasten the sleighs to the remaining shafts, glue one end of a piece of paper to the back of the front seat and the other end around the shaft (Fig. 145).

The Girl Riders for the sleighs are shown full size in Fig. 146, and

The Boy Riders for the horses are shown full size in Fig. 147. Make tracings from the patterns as you made that of the horse and prepare four girls and six boys. Paint their clothes in bright colors. Cut a second leg for each boy rider, so he can be made to sit astride of his horse, and glue the leg to his hip as shown in Fig. 148. Cut a slit in each seat of the sleigh and stick the flaps on the girl riders in them.

For the Platform shown directly under the horses and sleighs in Fig. 135, cut a piece of cardboard 11 inches in diameter; if you choose to make the Ferris wheel before the merry-go-round, you may use the center pieces removed in cutting out the rims, as noted in Fig. 153. Punch a hole through the center of this disk large enough for the peg connecting spools D and E to slip through. This platform rests upon the top of spool D and revolves with it.

Fig. 146.—Full-size Pattern for the Girl Riders.
Fig. 146.—Full-size Pattern for the Girl Riders.

Fig. 146.—Full-size Pattern for the Girl Riders.

Fig. 147.—Full-size Pattern for the Boy Riders.
Fig. 147.—Full-size Pattern for the Boy Riders.

Fig. 147.—Full-size Pattern for the Boy Riders.

Fig. 148.—How the Second Leg of the Boy is Attached.
Fig. 148.—How the Second Leg of the Boy is Attached.

Fig. 148.—How the Second Leg of the Boy is Attached.

To Operate the Merry-go-round. The key by which the mainspring is wound up is shown screwed in place on the under side of the cigar-box cover in Fig. 139. While winding the mainspring, it will be necessary to have some means of checking it so it will not unwind at the same time, and the best scheme for a check is to bore a small gimlet hole through the cover of the cigar box and stick a match through this and run it between the spokes of one of the clock wheels so as to prevent it from turning. Then when you have wound up the spring and are ready to start the merry-go-round, all you have to do is to pull out the match.

The model of this toy which the author has before him runs for five minutes with one winding, and any boy can make one which will run as well if he follows the directions given and uses a reasonable amount of carefulness in the work.

Other Animals than horses may be used if you wish to follow the arrangement of some of the latest merry-go-rounds, and pictures of these may be found among the colored cut-outs sold in the stationery stores, or if you can draw well, you may copy them from books and magazines. Great fun may be had by changing the positions of the boy riders, making them ride backward part of the time and sometimes two and three boys on a horse.

Doubtless you have heard of the famous Ferris wheel, and a good many of you have ridden in the smaller wheels patterned after it, at the amusement parks, so you will be interested in making

A Miniature Ferris Wheel like the one shown in Fig. 137.

The Standard for supporting the wheel (Fig. 149) consists of two triangular supports, one with a spool hub fastened to its top for the axle of the wheel to run through and the other with the cigar box inclosing the clockwork fastened to it. Figures 150, 151, and 152 show the construction of these supports. Cut strips P and Q 12 inches long and R 10 inches long, and trim off the upper ends of P and Q so when they are nailed together the lower ends will be 8 inches apart; nail strip R to the lower ends of P and Q (Fig. 150). To fasten the spool hub to its support, smear one side of a piece of tape with glue and wind it several times around the spool (Fig. 151), then set the spool on top of the support and press the ends of the tape against the sides of strips P and Q (Fig. 152).

Fig. 149.—Standard for the Ferris Wheel.
Fig. 149.—Standard for the Ferris Wheel.

Fig. 149.—Standard for the Ferris Wheel.

The Clockwork Motor for the Ferris wheel is fastened to the cover of a cigar box just as that for the merry-go-round was fastened (Fig. 139), but the length of the box is cut down as much as the clockwork will allow to make the box as square and compact as possible.

It is very necessary to have the axle bearings exactly on a line in order to have the wheel run smoothly, so, in fastening the cigar box to its support, be sure that the center of the hole in spool D (Fig. 139) is on a level with the spool hub on the opposite support. Nail the supports to a 10-inch by 12-inch board, 8 inches apart, and fasten a cigar box between them for

The Station Platform (Fig. 149).

To Make the Wheel, first lay out the rims upon a piece of heavy cardboard, using the radii shown in Fig. 153 for describing the circles, then lay the sheet of card- Tape Fig. 151 Fig. 132 board upon a board and

Fig. 150.—Make Two Supports like this for the Ferris Wheel Standard. Figs. 151 and 152.—How a Spool is Fastened to the Top of the Support for a Hub.
Fig. 150.—Make Two Supports like this for the Ferris Wheel Standard. Figs. 151 and 152.—How a Spool is Fastened to the Top of the Support for a Hub.

Fig. 150.—Make Two Supports like this for the Ferris Wheel Standard.

Figs. 151 and 152.—How a Spool is Fastened to the Top of the Support for a Hub.

Cut out the Rims with a sharp knife, being careful not to run off of the pencil line. The

Hubs of the wheel are spools with six holes bored in them for the spokes to fit in (Fig. 156). Cut six

Spokes 5¾ inches long by ⅛ inch thick for each hub, and cut a slot in one end of each for the cardboard rims to fit in (Figs. 154 and 157). Use a saw rather than a knife in making the slots, for it will make a kerf of just the right width to receive the cardboard and will not be so apt to split the ends of the slender spokes. Whittle the hub ends of the spokes to fit the holes in the spool hubs (Figs. 154 and 157). In
Fig. 153.—How to Lay out the Cardboard Rims of the Ferris Wheel. Fig. 154.—The Spokes Fitted into the Spool Hub. Fig. 155.—The Rim Slipped into the End of the Spokes.
Fig. 153.—How to Lay out the Cardboard Rims of the Ferris Wheel. Fig. 154.—The Spokes Fitted into the Spool Hub. Fig. 155.—The Rim Slipped into the End of the Spokes.

Fig. 153.—How to Lay out the Cardboard Rims of the Ferris Wheel.
Fig. 154.—The Spokes Fitted into the Spool Hub.
Fig. 155.—The Rim Slipped into the End of the Spokes.

Putting together the Spokes, Hubs, and Rims of the wheel, first stick three spokes in a hub and slip a rim into the slots in their ends, then stick the remaining spokes into the hub, one at a time, and spread the rim enough so it can be slipped into their slots (Fig. 155).

Fig. 156.—A Spool Hub for the Wheel.
Fig. 156.—A Spool Hub for the Wheel.

Fig. 156.—A Spool Hub for the Wheel.

Fig. 157.—How the Spokes, Rims, and Axles are Fastened Together.
Fig. 157.—How the Spokes, Rims, and Axles are Fastened Together.

Fig. 157.—How the Spokes, Rims, and Axles are Fastened Together.

When the hubs, rims, and spokes have been assembled, lay them aside and get some heavy wrapping-paper or thin cardboard out of which

To Make the Cars. The pattern for the cars is shown in Fig. 158, and on it you will find all the dimensions necessary for laying it out to the proper size. It will be understood that the unfigured portions of the drawing are the same as those with dimensions marked upon them. The dotted lines at the door and window openings indicate where the cutting is to be done, while all other dotted lines indicate where the cardboard is to be scored and folded.

Fig. 158.—Pattern for the Ferris Wheel Cars.
Fig. 158.—Pattern for the Ferris Wheel Cars.

Fig. 158.—Pattern for the Ferris Wheel Cars.

Use a ruler in making the drawing of the car to get the lines straight, and when you have finished it go over it carefully and compare it with the illustration to be sure it is correct, after which make a careful tracing of it, turn it over and transfer the drawing five times upon cardboard. These and your original drawing will give you the required number of cars. Cut out the openings with a sharp knife and then do the rest of the cutting with a pair of scissors; punch a ¼-inch hole in each end of each car with a lead-pencil (Fig. 158), being careful to get the holes exactly opposite. In folding and gluing the cars, slip the flaps inside and bend the roofs so they will follow the curve of the ends (Fig. 159.)

Fig. 159.—A Completed Car for the Ferris Wheel.
Fig. 159.—A Completed Car for the Ferris Wheel.

Fig. 159.—A Completed Car for the Ferris Wheel.

When the cars have been completed, cut six sticks 5 inches long, whittle them down until they are about inch in diameter, and sandpaper them until they are perfectly round and smooth. These sticks connect the rims of the wheel and form

The Axles from which the cars are hung (Fig. 159). Great care must be used in fastening them between the rims, for they are easily split, and the best way to do is to start a hole first in the ends of each axle with an awl or by driving a brad part way in and then withdrawing it; then drive a brad through each spoke of one rim into an axle (Fig. 157); slip the other ends of the axles through the holes in the ends of the cars (Fig. 159), and nail the spokes of the other rim to them.

To Mount the Wheel upon its standard, whittle an axle 8½ inches long to fit the hubs, then hold the wheel between the two uprights, with the hubs on a line with the spool bearings and run the axle through the holes (Fig. 137).

Build Steps at each end of the platform out of heavy writing-paper or light cardboard. Fold the paper or cardboard back and forth, making pleats about ¼ inch wide for the steps, and after gluing it in place cut out the balustrades and glue them to the edges of the steps. Make the top step low enough so there will be about ¼-inch clearance between it and the bottom of the cars (Fig. 137).

After you have made a final inspection to see that everything has been put together properly, your toy will be ready for operation, and I am sure that when you set the clockwork machinery in motion, and the little wheel begins to revolve slowly with each little car balancing upon its axle, you will agree that you have constructed a very interesting toy.

The "Flying Airships" is a riding device consisting of a number of cars suspended by steel cables from large arms pivoted to the top of a tower. When the machinery is started, the arms begin to revolve slowly, and the motion produced causes the cars to swing out away from the center. As the speed of the arms increases, the cars swing out farther and farther, until when the highest speed has been reached the cables by which the cars are suspended have taken an oblique position and raised the cars some distance above the ground; then the speed of the engine is gradually diminished, and the cars finally regain their former position. This piece of apparatus is also known as an aerostat.

You will find the miniature flying airships (Fig. 138) easy to construct after making a merry-go-round or Ferris wheel, as many of its details are identical with those of the other toys.

The Standard for the toy is made similar to the one for the merry-go-round (Fig. 135), except that the top board is omitted and a circular piece of cardboard of the size of the disks removed in cutting out the rims of the Ferris wheel is substituted in its place. Cut a hole through the exact center of the piece large enough so it will fit over spool D (Fig. 136).

Cut a Mast about 14 inches long and of the diameter of the hole in the spool and stick it into spool D; then 3 inches below the top of the mast fasten a spool with four horizontal arms 6 inches long glued into holes bored in it. Fasten a cross-piece 4½ inches long to the end of each arm with brads, and from these suspend

Cars made similar to those of the Ferris wheel, with cords. Set a small flag in a hole bored in the top of the mast and then run cords from the top of the mast out to the ends of the arm pieces.

With this toy the cars cannot be swung out obliquely as on the large flying airships except by

Increasing the Speed of the Clockwork. This can be accomplished by removing one or two of the wheels of the clockwork, but it is not advisable to take out more than one wheel in addition to those removed for the merry-go-round (Fig. 139) because the mainspring would require rewinding too often to make the toy enjoyable.

An Electric Motor can be belted to these toys as a substitute for the clockwork, if you own one and prefer to try it out.

The clockwork toys just described were invented by the author for his book "Handicraft for Handy Boys," and were the first designs, he believes, devised for home-made mechanical toys of this nature. No doubt you have noticed that manufacturers of the so-called "construction sets"—steel and wood strips supplied with bolts and screws for assembling—have used these very same forms of models to show what can be made with their outfits. But your Ferris wheel, merry-go-round, and aerostat, built as described in this chapter, with materials picked up at home, will be the equal of any that can be built, and you will have the satisfaction of knowing that you haven't required an expensive " construction set" for making them.

All sorts of toy vehicles can be operated by clockwork. Figure 160 shows

An Automobile, and Fig. 161 shows how the clockwork motor is mounted upon the chassis and belted to the driving wheel. The same scheme that was used for the cars of the toy railway described in Chapter VI will be followed in making

The Frame of the automobile, as that is about the sim
Fig. 160. The Car Completed.
Fig. 160. The Car Completed.

Fig. 160. The Car Completed.

Fig 161. The Framework.
Fig 161. The Framework.

Fig 161. The Framework.

plest way, and makes a light, easy-running vehicle. The bed will be cut of a different pattern, however, as will be seen in Fig. 162. Lay out the piece to the dimensions shown upon this drawing, and then cut it out, making a mortise in each end for the wheels to fit in. The spool wheels should be mounted in the same nanner as those of the railway cars, for which see Fig. 80, Chapter VI, and the directions upon page 51. One end of spool A should be pivoted with a longer finishing nail than those used for
Fig. 162.—Top View of Wooden Frame.
Fig. 162.—Top View of Wooden Frame.

Fig. 162.—Top View of Wooden Frame.

the other pivots, so that when driven in place about half an inch will project beyond the frame. A small silk spool should be fastened upon this for a belt-wheel (see B, Fig. 162). The hole in one of these spools is about three-sixteenths of an inch in diameter, so, in order to make it fit tightly upon the nail, it is necessary to fill in around the nail with sealing-wax. To do this, turn the wooden frame upon its edge and place the spool over the nail, being careful to get the nail in the exact center of the hole. Then hold a stick of sealing-wax over the spool, and with a lighted match melt the end and allow it to drip into the hole. When the hole has been partially filled, allow the wax to harden a little, and then press it down around the nail with the end of a match, being careful not to throw the spool out of center by doing so. The hole should then be filled to the top.

We are now ready to prepare the clockwork for mounting upon the wooden frame. The works shown in Fig. 161 are from an alarm clock, but if you have a striking clock, or one with works a little different from those shown in the illustration, it does not make a bit of difference in the scheme for attaching the works. The three parts shown in the foreground of Fig. 161 must first be removed from the works. These will be recognized readily in any clock, as they are pivoted close together, and regulate the speed of the other wheels. When they have been removed, the mainspring will unwind rapidly. The frame of the works shown in the illustration is held together with nuts, so that in removing the wheels it was necessary to unscrew two of them, spring the frame open enough to let the wheels drop out, and then replace the nuts again in their former positions. If the frame of your clockwork is riveted together, the wheels will have to be broken out. A small silk spool, such as B (Fig. 162), should be fastened upon the small pivot which originally operated the clock's hands, for a belt-wheel. Lay the works upon a table with the face-side down, and, after centering the hole of the spool upon the pivot, fasten it in place with sealing-wax in the same manner as you attached spool B (Fig. 161).

The works should now be attached to the wooden frame. Place them with the striker uppermost, near the edge of the frame, so that the small belt-wheels are in line with one another. Then bore a number of gimlet holes in the wooden frame and run copper wire through. them, passing it around the posts of the clock-frame and twisting its ends until the works are firmly fastened in place.

A rubber band about an eighth of an inch wide and long enough to reach from one belt-wheel to the other should be procured for

The Belt. This should stretch just enough to cling upon the spools, as more than that would cause too much friction.

Before going any further with the construction of the automobile

Test the Machine, to be sure that it is in perfect running order. Wind up the mainspring, pressing a finger against one of the wheels to hold it in check until you are ready to start the machine. When properly made, the clockwork automobile should run a distance of from twenty to twenty-five feet upon a wooden floor, while about three-quarters of that distance should be covered upon a floor with a fairly smooth carpet.

The Cardboard Sides and other details of the automobile should now be made. The patterns for these have been so shown in Figs 163 to 170 that they can easily be laid out to the proper shape and size by means of the pro
Figs. 163-170.—Patterns for the Automobile Touring-Car.
Figs. 163-170.—Patterns for the Automobile Touring-Car.

Figs. 163-170.—Patterns for the Automobile Touring-Car.

cess of enlarging by squares described on page 175, Chapter XVII. White cardboard should be used upon which to draw these pieces, and the thinner it is the easier you will find it to work with.

First prepare the two sides, cutting them out by the pattern of Fig. 163. Then glue the bottom edge of each side to the edge of the wooden frame, cutting holes in the left side for the belt-wheels and projecting posts to run through (see Fig. 160 and A, B, C, D, and E, Fig. 172). The top to the front of the car should now be cut as shown in Fig. 173. the distance between the sides being measured to get the piece of proper

Fig. 171.—Chauffeur.
Fig. 171.—Chauffeur.

Fig. 171.—Chauffeur.

dimensions. Bend the edges as in Fig. 173, and glue them to the inner surfaces of the side pieces as shown by the dotted lines in Fig. 172. In the same way cut and glue a piece of cardboard between the side pieces at G and H

Fig. 172.—Cardboard Side of Automobile.
Fig. 172.—Cardboard Side of Automobile.

Fig. 172.—Cardboard Side of Automobile.

(Fig. 172) for the seat-backs. The bent edges of these pieces are shown by dotted lines in the illustration. Draw four

Wheels as shown in Fig. 164, using a compass with which to describe the circles, and cut them out with a sharp knife. You can cut out between the spokes, if you wish, or leave them solid. Glue the wheels to the cardboard, placing their centers about as located at I and J, Fig. 172. Four

Mud-Guards should be cut like Fig. 165, with flaps made along one edge. Then bend these guards around the tops of the wheels, and, after applying glue to the flaps, press them against the cardboard side, holding your fingers upon the flaps until the glue has dried (see Fig. 160). The guards should be placed a little above the tops of the wheels. Cut four

Fig. 173.—The Hood.
Fig. 173.—The Hood.

Fig. 173.—The Hood.

Lamps like Fig. 166 and glue end K of two upon the front of the automobile at L (Fig. 172) and one of the other two upon each side at M. These lamps are shown in position in the illustration of the completed automobile (Fig. 160). Draw and cut

The Steering-Wheel similar to Fig. 167, and, after pivoting it to the end of a strip of cardboard with a pin as shown in Fig. 174, bend the lower end and glue it to the under side of the cardboard top F at N (see Fig. 172, also Fig. 160). Make a

Horn like Fig. 168 and glue it to the steering-wheel as shown in Fig. 174. A strip of cardboard about the size of that used for the upright of the steering-wheel should be cut for

The Brake, and glued to the inside surface of the right side of the car at O (Fig. 172).

The Chauffeur should now be made. Cut his head and body the shape and size of Fig. 169, drawing the face upon each side with goggles over the eyes. Cut the arms in two pieces the shape of P and Q (Fig. 170), and then pivot P to Q at R and the end of Q to the shoulder of the body at S, using thread for fastening the pieces together. Paint the hat, coat, sleeves, and gloves a leather color, and the face flesh color. The body should then be fastened to the hammer of the clock- works with sealing-wax, as shown in Fig. 171, while the left hand should be glued to the edge of the steering-wheel and the right to the end of the brake (see Fig. 160). By thus attaching the body to the end of the hammer, and winding up the small spring, the chauffeur will shake violently when the auto runs across the floor, showing the vibrations of the machine in a greatly exaggerated and amusing manner.

Fig. 174.—The Steering-Wheel.
Fig. 174.—The Steering-Wheel.

Fig. 174.—The Steering-Wheel.

It is now only necessary to

Paint the Machine to complete it. The photograph (Fig. 160) shows where different colors are needed. The lamps, top, ends, and sides of the front portion of the car should be painted the color of brass, and the rest of the sides, with the exception of a strip along the bottom and the edge of the arms, should be painted vermilion. Paint the inside of the car and the edges of the seat-arms tan color, to represent leather upholstering. With black paint, or ink, stripe off the door and trimmings upon the sides and top of the machine, as shown in Figs. 160, 172, and 173. Blacken the brake and steering-wheel and the spokes and rims of the wheels. Along the bottom of each side glue a strip of cardboard for the running-boards.

When you have tired of your touring-car, you can easily convert it into

An Automobile Delivery Wagon, such as illustrated in Fig. 175. To make this you will require the same frame as that used for the touring-car, with the clockworks and belt-wheels attached in the same manner. If you have made the touring-car, remove the cardboard sides from its wooden frame, separating the cardboard from the wood carefully so you can put the machine together again when you wish. If you haven't made this automobile, you will find the details for the construction of the frame in Figs. 161 and 162, and the manner of performing the work described on pages 104 to 107.

The Cardboard Sides are much easier to prepare than those for the touring-car, as they are straight and require but little cutting. The outline for these is shown in Fig. 175, surrounding the drawing of the completed wagon. Lay out one side upon a piece of cardboard, using the dimensions given upon the drawing, and then place it upon a board and cut it out with your knife. Using this as a

Fig. 175.—An Automobile Delivery Wagon.
Fig. 175.—An Automobile Delivery Wagon.

Fig. 175.—An Automobile Delivery Wagon.

pattern, place it upon another piece of cardboard and run a pencil around its edges, thus marking out the second side. In cutting out the latter piece, run your knife a little inside of the line in order to allow for the increase in size caused by marking it out with the first cardboard side. Having prepared the two sides, draw panels upon them in some such form as shown in the illustration, separating them with three lines. Draw a small window, with its top slightly arched, near the front edge of each side, and cut an opening for it (see illustration).

Glue the sides to the edges of the truck in the same manner as those of the touring-car were done, piercing holes for the posts of the clockwork to fit in, and openings for the belt-wheels to project through, in the left side. Cut a piece of cardboard for the back of the wagon, fit it between the sides, and fasten it in place by gluing a number of linen strips to it and the sides upon the inner or unexposed surfaces. Then cut a piece of cardboard for the roof, making it about two inches longer than the sides, to give it the proper projection over the front of the wagon. Fasten this piece in position in the same manner as you fastened the back of the wagon.

Make the floor and footboard for the wagon out of a piece of cardboard bent as shown in Fig. 175, and fasten it across the top edges of the projecting portions of the sides with linen strips. Cut a strip for a seat, and fit it between the sides an inch and one-half above the floor.

The Wheels of an automobile wagon contain fourteen spokes, but as you have the pattern for the touring-car wheels of twelve spokes, you can just as well use it in making the wagon wheels. They should be mounted upon the sides of the wagon, a trifle above the bottoms of the spool wheels, as shown in the illustration, so they will not touch the carpet when the machine is operated.

All Other Portions of the wagon should be made of the same patterns given for the touring-car, viz. the chauffeur (Figs. 169 and 170), the steering-wheel (Figs. 167 and 174), the brake (Fig. 160), and the lamps (Fig. 166). As the legs of the chauffeur will show, it will be necessary to cut a pair out of cardboard (the drawing shows the shape clearly enough to work by) and fasten them to his body. Fasten the chauffeur upon the seat and glue his left hand to the steering-wheel, placing the latter in front of him, as shown in the drawing. Stick the lower end of the cardboard upright of the steering-wheel upon a pin run through the wagon floor from the under side. Glue the upper end of the brake to the chauffeur's hand and the lower end to the side of the wagon.

Paint the Wagon with water colors, making the sides, end, and roof olive green, the steering-wheel, brake, and spokes of wheels black, and the lamps yellow or the color of brass. In painting the sides show the battery compartments upon them below what would properly be the bottom of the wagon (see illustration). Leave the cardboard white below this box, as it represents no portion of the machine, but is necessarily brought down so far to conceal the wooden frame. It will give the machine a more finished appearance if, after painting, you go over it with black paint and a fine brush and stripe the panels upon the sides, following the lines which you drew upon them with a pencil. Letter the word "Delivery" upon the center panel of each side, and the firm name in the small panel between the lamp and window.

By attaching a set of clockworks in the same manner as described for the automobiles, you can make

A Clockwork Railway, constructing the cars similar to the street car shown in Fig. 84, Chapter VI, and using the schemes in the same chapter for the tracks and depots.

Each car should be provided with a clockwork motor, because a single clockwork is not strong enough to pull more than one car. Let me know how you succeed in building a clockwork railway.