Jump to content

On the Generation of Animals/Book II

From Wikisource
1155311On the Generation of Animals — Book IIArthur PlattAristotle


Book II


1

THAT the male and the female are the principles of generation has been previously stated, as also what is their power and their essence. But why is it that one thing becomes and is male, another female? It is the business of our discussion as it proceeds to try and point out (1) that the sexes arise from Necessity and the first efficient cause, (2) from what sort of material they are formed. That (3) they exist because it is better and on account of the final cause, takes us back to a principle still further remote.

Now (1) some existing things are eternal and divine whilst others admit of both existence and non-existence. But (2) that which is noble and divine is always, in virtue of its own nature, the cause of the better in such things as admit of being better or worse, and what is not eternal does admit of existence and non-existence, and can partake in the better and the worse. And (3) soul is better than body, and living, having soul, is thereby better than the lifeless which has none, and being is better than not being, living than not living. These, then, are the reasons of the generation of animals. For since it is impossible that such a class of things as animals should be of an eternal nature, therefore that which comes into being is eternal in the only way possible. Now it is impossible for it to be eternal as an individual (though of course the real essence of things is in the individual)— were it such it would be eternal — but it is possible for it as a species. This is why there is always a class of men and animals and plants. But since the male and female essences are the first principles of these, they will exist in the existing individuals for the sake of generation. Again, as the first efficient or moving cause, to which belong the definition and the form, is better and more divine in its nature than the material on which it works, it is better that the superior principle should be separated from the inferior. Therefore, wherever it is possible and so far as it is possible, the male is separated from the female. For the first principle of the movement, or efficient cause, whereby that which comes into being is male, is better and more divine than the material whereby it is female. The male, however, comes together and mingles with the female for the work of generation, because this is common to both.

A thing lives, then, in virtue of participating in the male and female principles, wherefore even plants have some kind of life; but the class of animals exists in virtue of sense-perception. The sexes are divided in nearly all of these that can move about, for the reasons already stated, and some of them, as said before, emit semen in copulation, others not. The reason of this is that the higher animals are more independent in their nature, so that they have greater size, and this cannot exist without vital heat; for the greater body requires more force to move it, and heat is a motive force. Therefore, taking a general view, we may say that sanguinea are of greater size than bloodless animals, and those which move about than those which remain fixed. And these are just the animals which emit semen on account of their heat and size.

So much for the cause of the existence of the two sexes. Some animals bring to perfection and produce into the world a creature like themselves, as all those which bring their young into the world alive; others produce something undeveloped which has not yet acquired its own form; in this latter division the sanguinea lay eggs, the bloodless animals either lay an egg or give birth to a scolex. The difference between egg and scolex is this: an egg is that from a part of which the young comes into being, the rest being nutriment for it; but the whole of a scolex is developed into the whole of the young animal. Of the vivipara, which bring into the world an animal like themselves, some are internally viviparous (as men, horses, cattle, and of marine animals dolphins and the other cetacea); others first lay eggs within themselves, and only after this are externally viviparous (as the cartilaginous fishes). Among the ovipara some produce the egg in a perfect condition (as birds and all oviparous quadrupeds and footless animals, e.g. lizards and tortoises and most snakes; for the eggs of all these do not increase when once laid). The eggs of others are imperfect; such are those of fishes, crustaceans, and cephalopods, for their eggs increase after being produced.

All the vivipara are sanguineous, and the sanguinea are either viviparous or oviparous, except those which are altogether infertile. Among bloodless animals the insects produce a scolex, alike those that are generated by copulation and those that copulate themselves though not so generated. For there are some insects of this sort, which though they come into being by spontaneous generation are yet male and female; from their union something is produced, only it is imperfect; the reason of this has been previously stated.

These classes admit of much cross-division. Not all bipeds are viviparous (for birds are oviparous), nor are they all oviparous (for man is viviparous), nor are all quadrupeds oviparous (for horses, cattle, and countless others are viviparous), nor are they all viviparous (for lizards, crocodiles, and many others lay eggs). Nor does the presence or absence of feet make the difference between them, for not only are some footless animals viviparous, as vipers and the cartilaginous fishes, while others are oviparous, as the other fishes and serpents, but also among those which have feet many are oviparous and many viviparous, as the quadrupeds above mentioned. And some which have feet, as man, and some which have not, as the whale and dolphin, are internally viviparous. By this character then it is not possible to divide them, nor is any of the locomotive organs the cause of this difference, but it is those animals which are more perfect in their nature and participate in a purer element which are viviparous, for nothing is internally viviparous unless it receive and breathe out air. But the more perfect are those which are hotter in their nature and have more moisture and are not earthy in their composition. And the measure of natural heat is the lung when it has blood in it, for generally those animals which have a lung are hotter than those which have not, and in the former class again those whose lung is not spongy nor solid nor containing only a little blood, but soft and full of blood. And as the animal is perfect but the egg and the scolex are imperfect, so the perfect is naturally produced from the more perfect. If animals are hotter as shown by their possessing a lung but drier in their nature, or are colder but have more moisture, then they either lay a perfect egg or are viviparous after laying an egg within themselves. For birds and scaly reptiles because of their heat produce a perfect egg, but because of their dryness it is only an egg; the cartilaginous fishes have less heat than these but more moisture, so that they are intermediate, for they are both oviparous and viviparous within themselves, the former because they are cold, the latter because of their moisture; for moisture is vivifying, whereas dryness is furthest removed from what has life. Since they have neither feathers nor scales such as either reptiles or other fishes have, all which are signs rather of a dry and earthy nature, the egg they produce is soft; for the earthy matter does not come to the surface in their eggs any more than in themselves. This is why they lay eggs in themselves, for if the egg were laid externally it would be destroyed, having no protection.

Animals that are cold and rather dry than moist also lay eggs, but the egg is imperfect; at the same time, because they are of an earthy nature and the egg they produce is imperfect, therefore it has a hard integument that it may be preserved by the protection of the shell-like covering. Hence fishes, because they are scaly, and crustacea, because they are of an earthy nature, lay eggs with a hard integument.

The cephalopods, having themselves bodies of a sticky nature, preserve in the same way the imperfect eggs they lay, for they deposit a quantity of sticky material about the embryo. All insects produce a scolex. Now all the insects are bloodless, wherefore all creatures that produce a scolex from themselves are so. But we cannot say simply that all bloodless animals produce a scolex, for the classes overlap one another, (1) the insects, (2) the animals that produce a scolex, (3) those that lay their egg imperfect, as the scaly fishes, the crustacea, and the cephalopoda. I say that these form a gradation, for the eggs of these latter resemble a scolex, in that they increase after oviposition, and the scolex of insects again as it develops resembles an egg; how so we shall explain later.

We must observe how rightly Nature orders generation in regular gradation. The more perfect and hotter animals produce their young perfect in respect of quality (in respect of quantity this is so with no animal, for the young always increase in size after birth), and these generate living animals within themselves from the first. The second class do not generate perfect animals within themselves from the first (for they are only viviparous after first laying eggs), but still they are externally viviparous. The third class do not produce a perfect animal, but an egg, and this egg is perfect. Those whose nature is still colder than these produce an egg, but an imperfect one, which is perfected outside the body, as the class of scaly fishes, the crustacea, and the cephalopods. The fifth and coldest class does not even lay an egg from itself; but so far as the young ever attain to this condition at all, it is outside the body of the parent, as has been said already. For insects produce a scolex first; the scolex after developing becomes egg-like (for the so-called chrysalis or pupa is equivalent to an egg); then from this it is that a perfect animal comes into being, reaching the end of its development in the second change.

Some animals then, as said before, do not come into being from semen, but all the sanguinea do so which are generated by copulation, the male emitting semen into the female when this has entered into her the young are formed and assume their peculiar character, some within the animals themselves when they are viviparous, others in eggs.

There is a considerable difficulty in understanding how the plant is formed out of the seed or any animal out of the semen. Everything that comes into being or is made must (1) be made out of something, (2) be made by the agency of something, and (3) must become something. Now that out of which it is made is the material; this some animals have in its first form within themselves, taking it from the female parent, as all those which are not born alive but produced as a scolex or an egg; others receive it from the mother for a long time by sucking, as the young of all those which are not only externally but also internally viviparous. Such, then, is the material out of which things come into being, but we now are inquiring not out of what the parts of an animal are made, but by what agency. Either it is something external which makes them, or else something existing in the seminal fluid and the semen; and this must either be soul or a part of soul, or something containing soul.

Now it would appear irrational to suppose that any of either the internal organs or the other parts is made by something external, since one thing cannot set up a motion in another without touching it, nor can a thing be affected in any way by another if it does not set up a motion in it. Something then of the sort we require exists in the embryo itself, being either a part of it or separate from it. To suppose that it should be something else separate from it is irrational. For after the animal has been produced does this something perish or does it remain in it? But nothing of the kind appears to be in it, nothing which is not a part of the whole plant or animal. Yet, on the other hand, it is absurd to say that it perishes after making either all the parts or only some of them. If it makes some of the parts and then perishes, what is to make the rest of them? Suppose this something makes the heart and then perishes, and the heart makes another organ, by the same argument either all the parts must perish or all must remain. Therefore it is preserved and does not perish. Therefore it is a part of the embryo itself which exists in the semen from the beginning; and if indeed there is no part of the soul which does not exist in some part of the body, it would also be a part containing soul in it from the beginning.

How, then, does it make the other parts? Either all the parts, as heart, lung, liver, eye, and all the rest, come into being together or in succession, as is said in the verse ascribed to Orpheus, for there he says that an animal comes into being in the same way as the knitting of a net. That the former is not the fact is plain even to the senses, for some of the parts are clearly visible as already existing in the embryo while others are not; that it is not because of their being too small that they are not visible is clear, for the lung is of greater size than the heart, and yet appears later than the heart in the original development. Since, then, one is earlier and another later, does the one make the other, and does the later part exist on account of the part which is next to it, or rather does the one come into being only after the other? I mean, for instance, that it is not the fact that the heart, having come into being first, then makes the liver, and the liver again another organ, but that the liver only comes into being after the heart, and not by the agency of the heart, as a man becomes a man after being a boy, not by his agency. An explanation of this is that, in all the productions of Nature or of art, what already exists potentially is brought into being only by what exists actually; therefore if one organ formed another the form and the character of the later organ would have to exist in the earlier, e.g. the form of the liver in the heart. And otherwise also the theory is strange and fictitious.

Yet again, if the whole animal or plant is formed from semen or seed, it is impossible that any part of it should exist ready made in the semen or seed, whether that part be able to make the other parts or no. For it is plain that, if it exists in it from the first, it was made by that which made the semen. But semen must be made first, and that is the function of the generating parent. So, then, it is not possible that any part should exist in it, and therefore it has not within itself that which makes the parts.

But neither can this agent be external, and yet it must needs be one or other of the two. We must try, then, to solve this difficulty, for perhaps some one of the statements made cannot be made without qualification, e.g. the statement that the parts cannot be made by what is external to the semen. For if in a certain sense they cannot, yet in another sense they can. (Now it makes no difference whether we say ‘the semen’ or ‘that from which the semen comes’, in so far as the semen has in itself the movement initiated by the other.)

It is possible, then, that A should move B, and B move C; that, in fact, the case should be the same as with the automatic machines shown as curiosities. For the parts of such machines while at rest have a sort of potentiality of motion in them, and when any external force puts the first of them in motion, immediately the next is moved in actuality. As, then, in these automatic machines the external force moves the parts in a certain sense (not by touching any part at the moment, but by having touched one previously), in like manner also that from which the semen comes, or in other words that which made the semen, sets up the movement in the embryo and makes the parts of it by having first touched something though not continuing to touch it. In a way it is the innate motion that does this, as the act of building builds the house. Plainly, then, while there is something which makes the parts, this does not exist as a definite object, nor does it exist in the semen at the first as a complete part.

But how is each part formed? We must answer this by starting in the first instance from the principle that, in all products of Nature or art, a thing is made by something actually existing out of that which is potentially such as the finished product. Now the semen is of such a nature, and has in it such a principle of motion, that when the motion is ceasing each of the parts comes into being, and that as a part having life or soul. For there is no such thing as face or flesh without life or soul in it; it is only equivocally that they will be called face or flesh if the life has gone out of them, just as if they had been made of stone or wood. And the homogeneous parts and the organic come into being together. And just as we should not say that an axe or other instrument or organ was made by the fire alone, so neither shall we say that foot or hand were made by heat alone. The same applies also to flesh, for this too has a function. While, then, we may allow that hardness and softness, stickiness and brittleness, and whatever other qualities are found in the parts that have life and soul, may be caused by mere heat and cold, yet, when we come to the principle in virtue of which flesh is flesh and bone is bone, that is no longer so; what makes them is the movement set up by the male parent, who is in actuality what that out of which the offspring is made is in potentiality. This is what we find in the products of art; heat and cold may make the iron soft and hard, but what makes a sword is the movement of the tools employed, this movement containing the principle of the art. For the art is the starting-point and form of the product; only it exists in something else, whereas the movement of Nature exists in the product itself, issuing from another nature which has the form in actuality.

Has the semen soul, or not? The same argument applies here as in the question concerning the parts. As no part, if it participate not in soul, will be a part except in an equivocal sense (as the eye of a dead man is still called an ‘eye’), so no soul will exist in anything except that of which it is soul; it is plain therefore that semen both has soul, and is soul, potentially.

But a thing existing potentially may be nearer or further from its realization in actuality, as e.g. a mathematician when asleep is further from his realization in actuality as engaged in mathematics than when he is awake, and when awake again but not studying mathematics he is further removed than when he is so studying. Accordingly it is not any part that is the cause of the soul’s coming into being, but it is the first moving cause from outside. (For nothing generates itself, though when it has come into being it thenceforward increases itself.) Hence it is that only one part comes into being first and not all of them together. But that must first come into being which has a principle of increase (for this nutritive power exists in all alike, whether animals or plants, and this is the same as the power that enables an animal or plant to generate another like itself, that being the function of them all if naturally perfect). And this is necessary for the reason that whenever a living thing is produced it must grow. It is produced, then, by something else of the same name, as e.g. man is produced by man, but it is increased by means of itself. There is, then, something which increases it. If this is a single part, this must come into being first. Therefore if the heart is first made in some animals, and what is analogous to the heart in the others which have no heart, it is from this or its analogue that the first principle of movement would arise.

We have thus discussed the difficulties previously raised on the question what is the efficient cause of generation in each case, as the first moving and formative power.


2

The next question to be mooted concerns the nature of semen. For whereas when it issues from the animal it is thick and white, yet on cooling it becomes liquid as water, and its colour is that of water. This would appear strange, for water is not thickened by heat; yet semen is thick when it issues from within the animal’s body which is hot, and becomes liquid on cooling. Again, watery fluids freeze, but semen, if exposed in frosts to the open air, does not freeze but liquefies, as if it was thickened by the opposite of cold. Yet it is unreasonable, again, to suppose that it is thickened by heat. For it is only substances having a predominance of earth in their composition that coagulate and thicken on boiling, e.g. milk. It ought then to solidify on cooling, but as a matter of fact it does not become solid in any part but the whole of it goes like water.

This then is the difficulty. If it is water, water evidently does not thicken through heat, whereas the semen is thick and both it and the body whence it issues are hot. If it is made of earth or a mixture of earth and water, it ought not to liquefy entirely and turn to water.

Perhaps, however, we have not discriminated all the possibilities. It is not only the liquids composed of water and earthy matter that thicken, but also those composed of water and air; foam, for instance, becomes thicker and white, and the smaller and less visible the bubbles in it, the whiter and firmer does the mass appear. The same thing happens also with oil; on mixing with air it thickens, wherefore that which is whitening becomes thicker, the watery part in it being separated off by the heat and turning to air. And if oxide of lead is mixed with water or even with oil, the mass increases greatly and changes from liquid and dark to firm and white, the reason being that air is mixed in with it which increases the mass and makes the white shine through, as in foam and snow (for snow is foam). And water itself on mingling with oil becomes thick and white, because air is entangled in it by the act of pounding them together, and oil itself has much air in it (for shininess is a property of air, not of earth or water). This too is why it floats on the surface of the water, for the air contained in it as in a vessel bears it up and makes it float, being the cause of its lightness. So too oil is thickened without freezing in cold weather and frosts; it does not freeze because of its heat (for the air is hot and will not freeze), but because the air is forced together and compressed, as..., by the cold, the oil becomes thicker. These are the reasons why semen is firm and white when it issues from within the animal; it has a quantity of hot air in it because of the internal heat; afterwards, when the heat has evaporated and the air has cooled, it turns liquid and dark; for the water, and any small quantity of earthy matter there may be, remain in semen as it dries, as they do in phlegm.

Semen, then, is a compound of spirit (pneuma) and water, and the former is hot air (aerh); hence semen is liquid in its nature because it is made of water. What Ctesias the Cnidian has asserted of the semen of elephants is manifestly untrue; he says that it hardens so much in drying that it becomes like amber. But this does not happen, though it is true that one semen must be more earthy than another, and especially so with animals that have much earthy matter in them because of the bulk of their bodies. And it is thick and white because it is mixed with spirit, for it is also an invariable rule that it is white, and Herodotus does not report the truth when he says that the semen of the Aethiopians is black, as if everything must needs be black in those who have a black skin, and that too when he saw their teeth were white. The reason of the whiteness of semen is that it is a foam, and foam is white, especially that which is composed of the smallest parts, small in the sense that each bubble is invisible, which is what happens when water and oil are mixed and shaken together, as said before. (Even the ancients seem to have noticed that semen is of the nature of foam; at least it was from this they named the goddess who presides over union.)

This then is the explanation of the problem proposed, and it is plain too that this is why semen does not freeze; for air will not freeze.


3

The next question to raise and to answer is this. If, in the case of those animals which emit semen into the female, that which enters makes no part of the resulting embryo, where is the material part of it diverted if (as we have seen) it acts by means of the power residing in it? It is not only necessary to decide whether what is forming in the female receives anything material, or not, from that which has entered her, but also concerning the soul in virtue of which an animal is so called (and this is in virtue of the sensitive part of the soul)— does this exist originally in the semen and in the unfertilized embryo or not, and if it does whence does it come? For nobody would put down the unfertilized embryo as soulless or in every sense bereft of life (since both the semen and the embryo of an animal have every bit as much life as a plant), and it is productive up to a certain point. That then they possess the nutritive soul is plain (and plain is it from the discussions elsewhere about soul why this soul must be acquired first). As they develop they also acquire the sensitive soul in virtue of which an animal is an animal. For e.g. an animal does not become at the same time an animal and a man or a horse or any other particular animal. For the end is developed last, and the peculiar character of the species is the end of the generation in each individual. Hence arises a question of the greatest difficulty, which we must strive to solve to the best of our ability and as far as possible. When and how and whence is a share in reason acquired by those animals that participate in this principle? It is plain that the semen and the unfertilized embryo, while still separate from each other, must be assumed to have the nutritive soul potentially, but not actually, except that (like those unfertilized embryos that are separated from the mother) it absorbs nourishment and performs the function of the nutritive soul. For at first all such embryos seem to live the life of a plant. And it is clear that we must be guided by this in speaking of the sensitive and the rational soul. For all three kinds of soul, not only the nutritive, must be possessed potentially before they are possessed in actuality. And it is necessary either (1) that they should all come into being in the embryo without existing previously outside it, or (2) that they should all exist previously, or (3), that some should so exist and others not. Again, it is necessary that they should either (1) come into being in the material supplied by the female without entering with the semen of the male, or (2) come from the male and be imparted to the material in the female. If the latter, then either all of them, or none, or some must come into being in the male from outside.

Now that it is impossible for them all to preexist is clear from this consideration. Plainly those principles whose activity is bodily cannot exist without a body, e.g. walking cannot exist without feet. For the same reason also they cannot enter from outside. For neither is it possible for them to enter by themselves, being inseparable from a body, nor yet in a body, for the semen is only a secretion of the nutriment in process of change. It remains, then, for the reason alone so to enter and alone to be divine, for no bodily activity has any connexion with the activity of reason.

Now it is true that the faculty of all kinds of soul seems to have a connexion with a matter different from and more divine than the so-called elements; but as one soul differs from another in honour and dishonour, so differs also the nature of the corresponding matter. All have in their semen that which causes it to be productive; I mean what is called vital heat. This is not fire nor any such force, but it is the spiritus included in the semen and the foam-like, and the natural principle in the spiritus, being analogous to the element of the stars. Hence, whereas fire generates no animal and we do not find any living thing forming in either solids or liquids under the influence of fire, the heat of the sun and that of animals does generate them. Not only is this true of the heat that works through the semen, but whatever other residuum of the animal nature there may be, this also has still a vital principle in it. From such considerations it is clear that the heat in animals neither is fire nor derives its origin from fire.

Let us return to the material of the semen, in and with which comes away from the male the spiritus conveying the principle of soul. Of this principle there are two kinds; the one is not connected with matter, and belongs to those animals in which is included something divine (to wit, what is called the reason), while the other is inseparable from matter. This material of the semen dissolves and evaporates because it has a liquid and watery nature. Therefore we ought not to expect it always to come out again from the female or to form any part of the embryo that has taken shape from it; the case resembles that of the fig-juice which curdles milk, for this too changes without becoming any part of the curdling masses.

It has been settled, then, in what sense the embryo and the semen have soul, and in what sense they have not; they have it potentially but not actually.

Now semen is a secretion and is moved with the same movement as that in virtue of which the body increases (this increase being due to subdivision of the nutriment in its last stage). When it has entered the uterus it puts into form the corresponding secretion of the female and moves it with the same movement wherewith it is moved itself. For the female’s contribution also is a secretion, and has all the arts in it potentially though none of them actually; it has in it potentially even those parts which differentiate the female from the male, for just as the young of mutilated parents are sometimes born mutilated and sometimes not, so also the young born of a female are sometimes female and sometimes male instead. For the female is, as it were, a mutilated male, and the catamenia are semen, only not pure; for there is only one thing they have not in them, the principle of soul. For this reason, whenever a wind-egg is produced by any animal, the egg so forming has in it the parts of both sexes potentially, but has not the principle in question, so that it does not develop into a living creature, for this is introduced by the semen of the male. When such a principle has ben imparted to the secretion of the female it becomes an embryo.

Liquid but corporeal substances become surrounded by some kind of covering on heating, like the solid scum which forms on boiled foods when cooling. All bodies are held together by the glutinous; this quality, as the embryo develops and increases in size, is acquired by the sinewy substance, which holds together the parts of animals, being actual sinew in some and its analogue in others. To the same class belong also skin, blood-vessels, membranes, and the like, for these differ in being more or less glutinous and generally in excess and deficiency.


4

In those animals whose nature is comparatively imperfect, when a perfect embryo (which, however, is not yet a perfect animal) has been formed, it is cast out from the mother, for reasons previously stated. An embryo is then complete when it is either male or female, in the case of those animals who possess this distinction, for some (i.e. all those which are not themselves produced from a male or female parent nor from a union of the two) produce an offspring which is neither male nor female. Of the generation of these we shall speak later.

The perfect animals, those internally viviparous, keep the developing embryo within themselves and in close connexion until they give birth to a complete animal and bring it to light.

A third class is externally viviparous but first internally oviparous; they develop the egg into a perfect condition, and then in some cases the egg is set free as with creatures externally oviparous, and the animal is produced from the egg within the mother’s body; in other cases, when the nutriment from the egg is consumed, development is completed by connection with the uterus, and therefore the egg is not set free from the uterus. This character marks the cartilaginous fish, of which we must speak later by themselves.

Here we must make our first start from the first class; these are the perfect or viviparous animals, and of these the first is man. Now the secretion of the semen takes place in all of them just as does that of any other residual matter. For each is conveyed to its proper place without any force from the breath or compulsion of any other cause, as some assert, saying that the generative parts attract the semen like cupping-glasses, aided by the force of the breath, as if it were possible for either this secretion or the residue of the solid and liquid nutriment to go anywhere else than they do without the exertion of such a force. Their reason is that the discharge of both is attended by holding the breath, but this is a common feature of all cases when it is necessary to move anything, because strength arises through holding the breath. Why, even without this force the secretions or excretions are discharged in sleep if the parts concerned are full of them and are relaxed. One might as well say that it is by the breath that the seeds of plants are always segregated to the places where they are wont to bear fruit. No, the real cause, as has been stated already, is that there are special parts for receiving all the secretions, alike the useless (as the residues of the liquid and solid nutriment), and the blood, which has the so-called blood-vessels.

To consider now the region of the uterus in the female — the two blood-vessels, the great vessel and the aorta, divide higher up, and many fine vessels from them terminate in the uterus. These become over-filled from the nourishment they convey, nor is the female nature able to concoct it, because it is colder than man’s; so the blood is excreted through very fine vessels into the uterus, these being unable on account of their narrowness to receive the excessive quantity, and the result is a sort of haemorrhage. The period is not accurately defined in women, but tends to return during the waning of the moon. This we should expect, for the bodies of animals are colder when the environment happens to become so, and the time of change from one month to another is cold because of the absence of the moon, whence also it results that this time is stormier than the middle of the month. When then the residue of the nourishment has changed into blood, the catamenia tend to occur at the above-mentioned period, but when it is not concocted a little matter at a time is always coming away, and this is why ‘whites’ appear in females while still small, in fact mere children. If both these discharges of the secretions are moderate, the body remains in good health, for they act as a purification of the secretions which are the causes of a morbid state of body; if they do not occur at all or if they are excessive, they are injurious, either causing illness or pulling down the patient; hence whites, if continuous and excessive, prevent girls from growing. This secretion then is necessarily discharged by females for the reasons given; for, the female nature being unable to concoct the nourishment thoroughly, there must not only be left a residue of the useless nutriment, but also there must be a residue in the blood-vessels, and this filling the channels of the finest vessels must overflow. Then Nature, aiming at the best end, uses it up in this place for the sake of generation, that another creature may come into being of the same kind as the former was going to be, for the menstrual blood is already potentially such as the body from which it is discharged.

In all females, then, there must necessarily be such a secretion, more indeed in those that have blood and of these most of all in man, but in the others also some matter must be collected in the uterine region. The reason why there is more in those that have blood and most in man has been already given, but why, if all females have such a secretion, have not all males one to correspond? For some of them do not emit semen but, just as those which do emit it fashion by the movement in the semen the mass forming from the material supplied by the female, so do the animals in question bring the same to pass and exert the same formative power by the movement within themselves in that part from whence the semen is secreted. This is the region about the diaphragm in all those animals which have one, for the heart or its analogue is the first principle of a natural body, while the lower part is a mere addition for the sake of it. Now the reason why it is not all males that have a generative secretion, while all females do, is that the animal is a body with Soul or life; the female always provides the material, the male that which fashions it, for this is the power that we say they each possess, and this is what is meant by calling them male and female. Thus while it is necessary for the female to provide a body and a material mass, it is not necessary for the male, because it is not within the work of art or the embryo that the tools or the maker must exist. While the body is from the female, it is the soul that is from the male, for the soul is the reality of a particular body. For this reason if animals of a different kind are crossed (and this is possible when the periods of gestation are equal and conception takes place nearly at the same season and there is no great difference in the size of the animals), the first cross has a common resemblance to both parents, as the hybrid between fox and dog, partridge and domestic fowl, but as time goes on and one generation springs from another, the final result resembles the female in form, just as foreign seeds produce plants varying in accordance with the country in which they are sown. For it is the soil that gives to the seeds the material and the body of the plant. And hence the part of the female which receives the semen is not a mere passage, but the uterus has a considerable width, whereas the males that emit semen have only passages for this purpose, and these are bloodless.

Each of the secretions becomes such at the moment when it is in its proper place; before that there is nothing of the sort unless with much violence and contrary to nature.

We have thus stated the reason for which the generative secretions are formed in animals. But when the semen from the male (in those animals which emit semen) has entered, it puts into form the purest part of the female secretion (for the greater part of the catamenia also is useless and fluid, as is the most fluid part of the male secretion, i.e. in a single emission, the earlier discharge being in most cases apt to be infertile rather than the later, having less vital heat through want of concoction, whereas that which is concocted is thick and of a more material nature).

If there is no external discharge, either in women or other animals, on account of there not being much useless and superfluous matter in the secretion, then the quantity forming within the female altogether is as much as what is retained within those animals which have an external discharge; this is put into form by the power of the male residing in the semen secreted by him, or, as is clearly seen to happen in some insects, by the part in the female analogous to the uterus being inserted into the male.

It has been previously stated that the discharge accompanying sexual pleasure in the female contributes nothing to the embryo. The chief argument for the opposite view is that what are called bad dreams occur by night with women as with men; but this is no proof, for the same thing happens to young men also who do not yet emit semen, and to those who do emit semen but whose semen is infertile.

It is impossible to conceive without the emission of the male in union and without the secretion of the corresponding female material, whether it be discharged externally or whether there is only enough within the body. Women conceive, however, without experiencing the pleasure usual in such intercourse, if the part chance to be in heat and the uterus to have descended. But generally speaking the opposite is the case, because the os uteri is not closed when the discharge takes place which is usually accompanied by pleasure in women as well as men, and when this is so there is a readier way for the semen of the male to be drawn into the uterus.

The actual discharge does not take place within the uterus as some think, the os uteri being too narrow, but it is in the region in front of this, where the female discharges the moisture found in some cases, that the male emits the semen. Sometimes it remains in this place; at other times, if the uterus chance to be conveniently placed and hot on account of the purgation of the catamenia, it draws it within itself. A proof of this is that pessaries, though wet when applied, are removed dry. Moreover, in all those animals which have the uterus near the hypozoma, as birds and viviparous fishes, it is impossible that the semen should be so discharged as to enter it; it must be drawn into it. This region, on account of the heat which is in it, attracts the semen. The discharge and collection of the catamenia also excite heat in this part. Hence it acts like cone-shaped vessels which, when they have been washed out with hot water, their mouth being turned downwards, draw water into themselves. And this is the way things are drawn up, but some say that nothing of the kind happens with the organic parts concerned in copulation. Precisely the opposite is the case of those who say the woman emits semen as well as the man, for if she emits it outside the uterus this must then draw it back again into itself if it is to be mixed with the semen of the male. But this is a superfluous proceeding, and Nature does nothing superfluous.

When the material secreted by the female in the uterus has been fixed by the semen of the male (this acts in the same way as rennet acts upon milk, for rennet is a kind of milk containing vital heat, which brings into one mass and fixes the similar material, and the relation of the semen to the catamenia is the same, milk and the catamenia being of the same nature)— when, I say, the more solid part comes together, the liquid is separated off from it, and as the earthy parts solidify membranes form all round it; this is both a necessary result and for a final cause, the former because the surface of a mass must solidify on heating as well as on cooling, the latter because the foetus must not be in a liquid but be separated from it. Some of these are called membranes and others choria, the difference being one of more or less, and they exist in ovipara and vivipara alike.

When the embryo is once formed, it acts like the seeds of plants. For seeds also contain the first principle of growth in themselves, and when this (which previously exists in them only potentially) has been differentiated, the shoot and the root are sent off from it, and it is by the root that the plant gets nourishment; for it needs growth. So also in the embryo all the parts exist potentially in a way at the same time, but the first principle is furthest on the road to realization. Therefore the heart is first differentiated in actuality. This is clear not only to the senses (for it is so) but also on theoretical grounds. For whenever the young animal has been separated from both parents it must be able to manage itself, like a son who has set up house away from his father. Hence it must have a first principle from which comes the ordering of the body at a later stage also, for if it is to come in from outside at later period to dwell in it, not only may the question be asked at what time it is to do so, but also we may object that, when each of the parts is separating from the rest, it is necessary that this principle should exist first from which comes growth and movement to the other parts. (Wherefore all who say, as did Democritus, that the external parts of animals are first differentiated and the internal later, are much mistaken; it is as if they were talking of animals of stone or wood. For such as these have no principle of growth at all, but all animals have, and have it within themselves.) Therefore it is that the heart appears first distinctly marked off in all the sanguinea, for this is the first principle or origin of both homogeneous and heterogeneous parts, since from the moment that the animal or organism needs nourishment, from that moment does this deserve to be called its principle or origin. For the animal grows, and the nutriment, in its final stage, of an animal is the blood or its analogue, and of this the blood-vessels are the receptacle, wherefore the heart is the principle or origin of these also. (This is clear from the Enquiries and the anatomical drawings.)

Since the embryo is already potentially an animal but an imperfect one, it must obtain its nourishment from elsewhere; accordingly it makes use of the uterus and the mother, as a plant does of the earth, to get nourishment, until it is perfected to the point of being now an animal potentially locomotive. So Nature has first designed the two blood-vessels from the heart, and from these smaller vessels branch off to the uterus. These are what is called the umbilicus, for this is a blood-vessel, consisting of one or more vessels in different animals. Round these is a skin-like integument, because the weakness of the vessels needs protection and shelter. The vessels join on to the uterus like the roots of plants, and through them the embryo receives its nourishment. This is why the animal remains in the uterus, not, as Democritus says, that the parts of the embryo may be moulded in conformity with those of the mother. This is plain in the ovipara, for they have their parts differentiated in the egg after separation from the matrix.

Here a difficulty may be raised. If the blood is the nourishment, and if the heart, which first comes into being, already contains blood, and the nourishment comes from outside, whence did the first nourishment enter? Perhaps it is not true that all of it comes from outside just as in the seeds of plants there is something of this nature, the substance which at first appears milky, so also in the material of the animal embryo the superfluous matter of which it is formed is its nourishment from the first.

The embryo, then, grows by means of the umbilicus in the same way as a plant by its roots, or as animals themselves when separated from the nutriment within the mother, of which we must speak later at the time appropriate for discussing them. But the parts are not differentiated, as some suppose, because like is naturally carried to like. Besides many other difficulties involved in this theory, it results from it that the homogeneous parts ought to come into being each one separate from the rest, as bones and sinews by themselves, and flesh by itself, if one should accept this cause. The real cause why each of them comes into being is that the secretion of the female is potentially such as the animal is naturally, and all the parts are potentially present in it, but none actually. It is also because when the active and the passive come in contact with each other in that way in which the one is active and the other passive (I mean in the right manner, in the right place, and at the right time), straightway the one acts and the other is acted upon. The female, then, provides matter, the male the principle of motion. And as the products of art are made by means of the tools of the artist, or to put it more truly by means of their movement, and this is the activity of the art, and the art is the form of what is made in something else, so is it with the power of the nutritive soul. As later on in the case of mature animals and plants this soul causes growth from the nutriment, using heat and cold as its tools (for in these is the movement of the soul), and each thing comes into being in accordance with a certain formula, so also from the beginning does it form the product of nature. For the material by which this latter grows is the same as that from which it is constituted at first; consequently also the power which acts upon it is identical with that which originally generated it; if then this acting power is the nutritive soul, this is also the generative soul, and this is the nature of every organism, existing in all animals and plants. [But the other parts of the soul exist in some animals, not in others.] In plants, then, the female is not separated from the male, but in those animals in which it is separated the male needs the female besides.


5

And yet the question may be raised why it is that, if indeed the female possesses the same soul and if it is the secretion of the female which is the material of the embryo, she needs the male besides instead of generating entirely from herself. The reason is that the animal differs from the plant by having sense-perception; if the sensitive soul is not present, either actually or potentially, and either with or without qualification, it is impossible for face, hand, flesh, or any other part to exist; it will be no better than a corpse or part of a corpse. If then, when the sexes are separated, it is the male that has the power of making the sensitive soul, it is impossible for the female to generate an animal from itself alone, for the process in question was seen to involve the male quality. Certainly that there is a good deal in the difficulty stated is plain in the case of the birds that lay wind-eggs, showing that the female can generate up to a certain point unaided. But this still involves a difficulty; in what way are we to say that their eggs live? It neither possible that they should live in the same way as fertile eggs (for then they would produce a chick actually alive), nor yet can they be called eggs only in the sense in which an egg of wood or stone is so called, for the fact that these eggs go bad shows that they previously participate in some way in life. It is plain, then, that they have some soul potentially. What sort of soul will this be? It must be the lowest surely, and this is the nutritive, for this exists in all animals and plants alike. Why then does it not perfect the parts and the animal? Because they must have a sensitive soul, for the parts of animals are not like those of a plant. And so the female animal needs the help of the male, for in these animals we are speaking of the male is separate. This is exactly what we find, for the wind-eggs become fertile if the male tread the female in a certain space of time. About the cause of these things, however, we shall enter into detail later.

If there is any kind of animal which is female and has no male separate from it, it is possible that this may generate a young one from itself without copulation. No instance of this worthy of credit has been observed up to the present at any rate, but one case in the class of fishes makes us hesitate. No male of the so-called erythrinus has ever yet been seen, but females, and specimens full of roe, have been seen. Of this, however, we have as yet no proof worthy of credit. Again, some members of the class of fishes are neither male nor female, as eels and a kind of mullets found in stagnant waters. But whenever the sexes are separate the female cannot generate perfectly by herself alone, for then the male would exist in vain, and Nature makes nothing in vain. Hence in such animals the male always perfects the work of generation, for he imparts the sensitive soul, either by means of the semen or without it. Now the parts of the embryo already exist potentially in the material, and so when once the principle of movement has been imparted to them they develop in a chain one after another, as the wheels are moved one by another in the automatic machines. When some of the natural philosophers say that like is brought to like, this must be understood, not in the sense that the parts are moved as changing place, but that they stay where they are and the movement is a change of quality (such as softness, hardness, colour, and the other differences of the homogeneous parts); thus they become in actuality what they previously were in potentiality. And what comes into being first is the first principle; this is the heart in the sanguinea and its analogue in the rest, as has been often said already. This is plain not only to the senses (that it is first to come into being), but also in view of its end; for life fails in the heart last of all, and it happens in all cases that what comes into being last fails first, and the first last, Nature running a double course, so to say, and turning back to the point from whence she started. For the process of becoming is from the non-existent to the existent, and that of perishing is back again from the existent to the non-existent.


6

After this, as said already, the internal parts come into being before the external. The greater become visible before the less, even if some of them do not come into being before them. First the parts above the hypozoma are differentiated and are superior in size; the part below is both smaller and less differentiated. This happens in all animals in which exists the distinction of upper and lower, except in the insects; the growth of those that produce a scolex is towards the upper part, for this is smaller in the beginning. The cephalopoda are the only locomotive animals in which the distinction of upper and lower does not exist.

What has been said applies to plants also, that the upper portion is earlier in development than the lower, for the roots push out from the seed before the shoots.

The agency by which the parts of animals are differentiated is air, not however that of the mother nor yet of the embryo itself, as some of the physicists say. This is manifest in birds, fishes, and insects. For some of these are separated from the mother and produced from an egg, within which the differentiation takes place; other animals do not breathe at all, but are produced as a scolex or an egg; those which do breathe and whose parts are differentiated within the mother’s uterus yet do not breathe until the lung is perfected, and the lung and the preceding parts are differentiated before they breathe. Moreover, all polydactylous quadrupeds, as dog, lion, wolf, fox, jackal, produce their young blind, and the eyelids do not separate till after birth. Manifestly the same holds also in all the other parts; as the qualitative, so also the quantitative differentia comes into being, pre-existing potentially but being actualized later by the same causes by which the qualitative distinction is produced, and so the eyelids become two instead of one. Of course air must be present, because heat and moisture are present, the former acting and the latter being acted upon.

Some of the ancient nature-philosolphers made an attempt to state which part comes into being after which, but were not sufficiently acquainted with the facts. It is with the parts as with other things; one naturally exists prior to another. But the word ‘prior’ is used in more senses than one. For there is a difference between the end or final cause and that which exists for the sake of it; the latter is prior in order of development, the former is prior in reality. Again, that which exists for the sake of the end admits of division into two classes, (1) the origin of the movement, (2) that which is used by the end; I mean, for instance, (1) that which can generate, (2) that which serves as an instrument to what is generated, for the one of these, that which makes, must exist first, as the teacher before the learner, and the other later, as the pipes are later than he who learns to play upon them, for it is superfluous that men who do not know how to play should have pipes. Thus there are three things: first, the end, by which we mean that for the sake of which something else exists; secondly, the principle of movement and of generation, existing for the sake of the end (for that which can make and generate, considered simply as such, exists only in relation to what is made and generated); thirdly, the useful, that is to say what the end uses. Accordingly, there must first exist some part in which is the principle of movement (I say a part because this is from the first one part of the end and the most important part too); next after this the whole and the end; thirdly and lastly, the organic parts serving these for certain uses. Hence if there is anything of this sort which must exist in animals, containing the principle and end of all their nature, this must be the first to come into being — first, that is, considered as the moving power, but simultaneous with the whole embryo if considered as a part of the end. Therefore all the organic parts whose nature is to bring others into being must always themselves exist before them, for they are for the sake of something else, as the beginning for the sake of the end; all those parts which are for the sake of something else but are not of the nature of beginnings must come into being later. So it is not easy to distinguish which of the parts are prior, those which are for the sake of another or that for the sake of which are the former. For the parts which cause the movement, being prior to the end in order of development, come in to cause confusion, and it is not easy to distinguish these as compared with the organic parts. And yet it is in accordance with this method that we must inquire what comes into being after what; for the end is later than some parts and earlier than others. And for this reason that part which contains the first principle comes into being first, next to this the upper half of the body. This is why the parts about the head, and particularly the eyes, appear largest in the embryo at an early stage, while the parts below the umbilicus, as the legs, are small; for the lower parts are for the sake of the upper, and are neither parts of the end nor able to form it.

But they do not say well nor do they assign a necessary cause who say simply that ‘it always happens so’, and imagine that this is a first principle in these cases. Thus Democritus of Abdera says that ‘there is no beginning of the infinite; now the cause is a beginning, and the eternal is infinite; in consequence, to ask the cause of anything of this kind is to seek for a beginning of the infinite’. Yet according to this argument, which forbids us to seek the cause, there will be no proof of any eternal truth whatever; but we see that there is a proof of many such, whether by ‘eternal’ we mean what always happens or what exists eternally; it is an eternal truth that the angles of a triangle are always equal to two right angles, or that the diagonal of a square is incommensurable with the side, and nevertheless a cause and a proof can be given for these truths. While, then, it is well said that we must not take on us to seek a beginning (or first principle) of all things, yet this is not well said of all things whatever that always are or always happen, but only of those which really are first principles of the eternal things; for it is by another method, not by proof, that we acquire knowledge of the first principle. Now in that which is immovable and unchanging the first principle is simply the essence of the thing, but when we come to those things which come into being the principles are more than one, varying in kind and not all of the same kind; one of this number is the principle of movement, and therefore in all the sanguinea the heart is formed first, as was said at the beginning, and in the other animals that which is analogous to the heart.

From the heart the blood-vessels extend throughout the body as in the anatomical diagrams which are represented on the wall, for the parts lie round these because they are formed out of them. The homogeneous parts are formed by heat and cold, for some are put together and solidified by the one and some by the other. The difference between these has already been discussed elsewhere, and it has been stated what kinds of things are soluble by liquid and fire, and what are not soluble by liquid and cannot be melted by fire. The nutriment then oozes through the blood-vessels and the passages in each of the parts, like water in unbaked pottery, and thus is formed the flesh or its analogues, being solidified by cold, which is why it is also dissolved by fire. But all the particles given off which are too earthy, having but little moisture and heat, cool as the moisture evaporates along with the heat; so they become hard and earthy in character, as nails, horns, hoofs, and beaks, and therefore they are softened by fire but none of them is melted by it, while some of them, as egg-shells, are soluble in liquids. The sinews and bones are formed by the internal heat as the moisture dries, and hence the bones are insoluble by fire like pottery, for like it they have been as it were baked in an oven by the heat in the process of development. But it is not anything whatever that is made into flesh or bone by the heat, but only something naturally fitted for the purpose; nor is it made in any place or time whatever, but only in a place and time naturally so fitted. For neither will that which exists potentially be made except by that moving agent which possesses the actuality, nor will that which possesses the actuality make anything whatever; the carpenter would not make a box except out of wood, nor will a box be made out of the wood without the carpenter. The heat exists in the seminal secretion, and the movement and activity in it is sufficient in kind and in quantity to correspond to each of the parts. In so far as there is any deficiency or excess, the resulting product is in worse condition or physically defective, in like manner as in the case of external substances which are thickened by boiling that they may be more palatable or for any other purpose. But in the latter case it is we who apply the heat in due measure for the motion required; in the former it is the nature of the male parent that gives it, or with animals spontaneously generated it is the movement and heat imparted by the right season of the year that it is the cause.

Cooling, again, is mere deprivation of heat. Nature makes use of both; they have of necessity the power of bringing about different results, but in the development of the embryo we find that the one cools and the other heats for some definite purpose, and so each of the parts is formed; thus it is in one sense by necessity, in another for a final cause, that they make the flesh soft, the sinews solid and elastic, the bones solid and brittle. The skin, again, is formed by the drying of the flesh, like the scum upon boiled substances; it is so formed not only because it is on the outside, but also because what is glutinous, being unable to evaporate, remains on the surface. While in other animals the glutinous is dry, for which reason the covering of the invertebrates is testaceous or crustaceous, in the vertebrates it is rather of the nature of fat. In all of these which are not of too earthy a nature the fat is collected under the covering of the skin, a fact which points to the skin being formed out of such a glutinous substance, for fat is somewhat glutinous. As we said, all these things must be understood to be formed in one sense of necessity, but in another sense not of necessity but for a final cause.

The upper half of the body, then, is first marked out in the order of development; as time goes on the lower also reaches its full size in the sanguinea. All the parts are first marked out in their outlines and acquire later on their colour and softness or hardness, exactly as if Nature were a painter producing a work of art, for painters, too, first sketch in the animal with lines and only after that put in the colours.

Because the source of the sensations is in the heart, therefore this is the part first formed in the whole animal, and because of the heat of this organ the cold forms the brain, where the blood-vessels terminate above, corresponding to the heat of the heart. Hence the parts about the head begin to form next in order after the heart, and surpass the other parts in size, for the brain is from the first large and fluid.

There is a difficulty about what happens with the eyes of animals. Though from the beginning they appear very large in all creatures, whether they walk or swim or fly, yet they are the last of the parts to be formed completely, for in the intervening time they collapse. The reason is this. The sense-organ of the eyes is set upon certain passages, as are the other sense-organs. Whereas those of touch and taste are simply the body itself or some part of the body of animals, those of smell and hearing are passages connecting with the external air and full themselves of innate spiritus; these passages end at the small blood-vessels about the brain which run thither from the heart. But the eye is the only sense-organ that has a bodily constitution peculiar to itself. It is fluid and cold, and does not exist from the first in the place which it occupies later in the same way as the other parts do, for they exist potentially to begin with and actually come into being later, but the eye is the purest part of the liquidity about the brain drained off through the passages which are visible running from them to the membrane round the brain. A proof of this is that, apart from the brain, there is no other part in the head that is cold and fluid except the eye. Of necessity therefore this region is large at first but falls in later. For the same thing happens with the brain; at first it is liquid and large, but in course of evaporation and concoction it becomes more solid and falls in; this applies both to the brain and the eyes. The head is very large at first, on account of the brain, and the eyes appear large because of the liquid in them. They are the last organs to reach completion because the brain is formed with difficulty; for it is at a late period that it gets rid of its coldness and fluidity; this applies to all animals possessing a brain, but especially to man. For this reason the ‘bregma’ is the last of the bones to be formed; even after birth this bone is still soft in children. The cause of this being so with men more than with other animals is the fact that their brain is the most fluid and largest. This again is because the heat in man’s heart is purest. His intellect shows how well he is tempered, for man is the wisest of animals. And children for a long time have no control over their heads on account of the heaviness of the brain; and the same applies to the parts which it is necessary to move, for it is late that the principle of motion gets control over the upper parts, and last of all over those whose motion is not connected directly with it, as that of the legs is not. Now the eyelid is such a part. But since Nature makes nothing superfluous nor in vain, it is clear also that she makes nothing too late or too soon, for if she did the result would be either in vain or superfluous. Hence it is necessary that the eyelids should be separated at the same time as the heart is able to move them. So then the eyes of animals are perfected late because of the amount of concoction required by the brain, and last of all the parts because the motion must be very strong before it can affect parts so far from the first principle of motion and so cold. And it is plain that such is the nature of the eyelids, for if the head is affected by never so little heaviness through sleepiness or drunkenness or anything else of the kind, we cannot raise the eyelids though their own weight is so small. So much for the question how the eyes come into being, and why and for what cause they are the last to be fully developed.

Each of the other parts is formed out of the nutriment, those most honourable and participating in the sovereign principle from the nutriment which is first and purest and fully concocted, those which are only necessary for the sake of the former parts from the inferior nutriment and the residues left over from the other. For Nature, like a good householder, is not in the habit of throwing away anything from which it is possible to make anything useful. Now in a household the best part of the food that comes in is set apart for the free men, the inferior and the residue of the best for the slaves, and the worst is given to the animals that live with them. Just as the intellect acts thus in the outside world with a view to the growth of the persons concerned, so in the case of the embryo itself does Nature form from the purest material the flesh and the body of the other sense-organs, and from the residues thereof bones, sinews, hair, and also nails and hoofs and the like; hence these are last to assume their form, for they have to wait till the time when Nature has some residue to spare.

The bones, then, are made in the first conformation of the parts from the seminal secretion or residue. As the animal grows the bones grow from the natural nourishment, being the same as that of the sovereign parts, but of this they only take up the superfluous residues. For everywhere the nutriment may be divided into two kinds, the first and the second; the former is ‘nutritious’, being that which gives its essence both to the whole and to the parts; the latter is concerned with growth, being that which causes quantitative increase. But these must be distinguished more fully later on. The sinews are formed in the same way as the bones and out of the same materials, the Seminal and nutritious residue. Nails, hair, hoofs, horns, beaks, the spurs of cocks, and any other similar parts, are on the contrary formed from the nutriment which is taken later and only concerned with growth, in other words that which is derived from the mother, or from the outer world after birth. For this reason the bones on the one hand only grow up to a certain point (for there is a limit of size in all animals, and therefore also of the growth of the bones; if these had been always able to grow, all animals that have bone or its analogue would grow as long as they lived, for these set the limit of size to animals. What is the reason of their not always increasing in size must be stated later.)

Hair, on the contrary, and growths akin to hair go on growing as long as they exist at all, and increase yet more in diseases and when the body is getting old and wasting, because more residual matter is left over, as owing to old age and disease less is expended on the important parts, though when the residual matter also fails through age the hair fails with it. But the contrary is the case with the bones, for they waste away along with the body and the other parts. Hair actually goes on growing after death; it does not, however, begin growing then.

About the teeth a difficulty may be raised. They have actually the same nature as the bones, and are formed out of the bones, but nails, hair, horns, and the like are formed out of the skin, and that is why they change in colour along with it, for they become white, black, and all sorts of colours according to that of the skin. But the teeth do nothing of the sort, for they are made out of the bones in all animals that have both bones and teeth. Of all the bones they alone go on growing through life, as is plain with the teeth which grow out of the straight line so as no longer to touch each other. The reason for their growth, as a final cause, is their function, for they would soon be worn down if there were not some means of saving them; even as it is they are altogether worn down in old age in some animals which eat much and have not large teeth, their growth not being in proportion to their detrition. And so Nature has contrived well to meet the case in this also, for she causes the failure of the teeth to synchronize with old age and death. If life lasted for a thousand or ten thousand years the original teeth must have been very large indeed, and many sets of them must have been produced, for even if they had grown continuously they would still have been worn smooth and become useless for their work. The final cause of their growth has been now stated, but besides this as a matter of fact the growth of the teeth is not the same as that of the other bones. The latter all come into being in the first formation of the embryo and none of them later, but the teeth do so later. Therefore it is possible for them to grow again after the first set falls out, for though they touch the bones they are not connate with them. They are formed, however, out of the nutriment distributed to the bones, and so have the same nature, even when the bones have their own number complete.

Other animals are born in possession of teeth or their analogue (unless in cases contrary to Nature), because when they are set free from the parent they are more perfect than man; but man (also unless in cases contrary to Nature) is born without them.

The reason will be stated later why some teeth are formed and fall out but others do not fall out.

It is because such parts are formed from a residue that man is the most naked in body of all animals and has the smallest nails in proportion to his size; he has the least amount of earthy residue, but that part of the blood which is not concocted is the residue, and the earthy part in the bodies of all animals is the least concocted. We have now stated how each of the parts is formed and what is the cause of their generation.


7

In viviparous animals, as said before, the embryo gets its growth through the umbilical cord. For since the nutritive power of the soul, as well as the others, is present in animals, it straightway sends off this cord like a root to the uterus. The cord consists of blood-vessels in a sheath, more numerous in the larger animals as cattle and the like, one in the smallest, two in those of intermediate size. Through this cord the embryo receives its nourishment in the form of blood, for the uterus is the termination of many blood-vessels. All animals with no front teeth in the upper jaw, and all those which have them in both jaws and whose uterus has not one great blood-vessel running through it but many close together insteadall these have in the uterus the so-called cotyledons (with which the umbilical cord connects and is closely united; for the vessels which pass through the cord run backwards and forwards between embryo and uterus and split up into smaller vessels all over the uterus; where they terminate, there are found the cotyledons). Their convexity is turned towards the uterus, the concavity towards the embryo. Between uterus and embryo are the chorion and the membranes. As the embryo grows and approaches perfection the cotyledons become smaller and finally disappear when it is perfected. For Nature sends the sanguineous nutriment for the embryo into this part of the uterus as she sends milk into the breasts, and because the cotyledons are gradually aggregated from many into a few the body of the cotyledon becomes like an eruption or inflammation. So long as the embryo is comparatively small, being unable to receive much nutriment, they are plain and large, but when it has increased in size they fall in together.

But most of the animals which have front teeth in both jaws and no horns have no cotyledons in the uterus, but the umbilical cord runs to meet one blood-vessel, which is large and extends throughout the uterus. Of such animals some produce one young at a time, some more than one, but the same description applies to both these classes. (This should be studied with the aid of the examples drawn in the Anatomy and the Enquiries.) For the young, if numerous, are attached each to its umbilical cord, and this to the blood-vessel of the mother; they are arranged next to one another along the stream of the blood-vessel as along a canal; and each embryo is enclosed in its membranes and chorion.

Those who say that children are nourished in the uterus by sucking some lump of flesh or other are mistaken. If so, the same would have been the case with other animals, but as it is we do not find this (and this can easily be observed by dissection). Secondly, all embryos alike, whether of creatures that fly or swim or walk, are surrounded by fine membranes separating them from the uterus and from the fluids which are formed in it; but neither in these themselves is there anything of the kind, nor is it possible for the embryo to take nourishment by means of any of them. Thirdly, it is plain that all creatures developed in eggs grow when separated from the uterus.

Natural intercourse takes place between animals of the same kind. However, those also unite whose nature is near akin and whose form is not very different, if their size is much the same and if the periods of gestation are equal. In other animals such cases are rare, but they occur with dogs and foxes and wolves; the Indian dogs also spring from the union of a dog with some wild dog-like animal. A similar thing has been seen to take place in those birds that are amative, as partridges and hens. Among birds of prey hawks of different form are thought to unite, and the same applies to some other birds. Nothing worth mentioning has been observed in the inhabitants of the sea, but the so-called ‘rhinobates’ especially is thought to spring from the union of the ‘rhini’ and ‘batus’. And the proverb about Libya, that ‘Libya is always producing something new’, is said to have originated from animals of different species uniting with one another in that country, for it is said that because of the want of water all meet at the few places where springs are to be found, and that even different kinds unite in consequence.

Of the animals that arise from such union all except mules are found to copulate again with each other and to be able to produce young of both sexes, but mules alone are sterile, for they do not generate by union with one another or with other animals. The problem why any individual, whether male or female, is sterile is a general one, for some men and women are sterile, and so are other animals in their several kinds, as horses and sheep. But this kind, of mules, is universally so. The causes of sterility in other animals are several. Both men and women are sterile from birth when the parts useful for union are imperfect, so that men never grow a beard but remain like eunuchs, and women do not attain puberty; the same thing may befall others as their years advance, sometimes on account of the body being too well nourished (for men who are in too good condition and women who are too fat the seminal secretion is taken up into the body, and the former have no semen, the latter no catamenia); at other times by reason of sickness men emit the semen in a cold and liquid state, and the discharges of women are bad and full of morbid secretions. Often, too, in both sexes this state is caused by injuries in the parts and regions contributory to copulation. Some such cases are curable, others incurable, but the subjects especially remain sterile if anything of the sort has happened in the first formation of the parts in the embryo, for then are produced women of a masculine and men of a feminine appearance, and in the former the catamenia do not occur, in the latter the semen is thin and cold. Hence it is with good reason that the semen of men is tested in water to find out if it is infertile, for that which is thin and cold is quickly spread out on the surface, but the fertile sinks to the bottom, for that which is well concocted is hot indeed, but that which is firm and thick is well concocted. They test women by pessaries to see if the smells thereof permeate from below upwards to the breath from the mouth and by colours smeared upon the eyes to see if they colour the saliva. If these results do not follow it is a sign that the passages of the body, through which the catamenia are secreted, are clogged and closed. For the region about the eyes is, of all the head, that most nearly connected with the generative secretions; a proof of this is that it alone is visibly changed in sexual intercourse, and those who indulge too much in this are seen to have their eyes sunken in. The reason is that the nature of the semen is similar to that of the brain, for the material of it is watery (the heat being acquired later). And the seminal purgations are from the region of the diaphragm, for the first principle of nature is there, so that the movements from the pudenda are communicated to the chest, and the smells from the chest are perceived through the respiration.


8

In men, then, and in other kinds, as said before, such deficiency occurs sporadically, but the whole of the mule kind is sterile. The reason has not been rightly given by Empedocles and Democritus, of whom the former expresses himself obscurely, the latter more intelligibly. For they offer their demonstration in the case of all these animals alike which unite against their affinities. Democritus says that the genital passages of mules are spoilt in the mother’s uterus because the animals from the first are not produced from parents of the same kind. But we find that though this is so with other animals they are none the less able to generate; yet, if this were the reason, all others that unite in this manner ought to be barren. Empedocles assigns as his reason that the mixture of the ‘seeds’ becomes dense, each of the two seminal fluids out of which it is made being soft, for the hollows in each fit into the densities of the other, and in such cases a hard substance is formed out of soft ones, like bronze mingled with tin. Now he does not give the correct reason in the case of bronze and tin —(we have spoken of them in the Problems)— nor, to take general ground, does he take his principles from the intelligible. How do the ‘hollows’ and ‘solids’ fit into one another to make the mixing, e.g. in the case of wine and water? This saying is quite beyond us; for how we are to understand the ‘hollows’ of the wine and water is too far beyond our perception. Again, when, as a matter of fact, horse is born of horse, ass of ass, and mule of horse and ass in two ways according as the parents are stallion and she-ass or jackass and mare, why in the last case does there result something so ‘dense’ that the offspring is sterile, whereas the offspring of male and female horse, male and female ass, is not sterile? And yet the generative fluid of the male and female horse is soft. But both sexes of the horse cross with both sexes of the ass, and the offspring of both crosses are barren, according to Empedocles, because from both is produced something ‘dense’, the ‘seeds’ being ‘soft’. If so, the offspring of stallion and mare ought also to be sterile. If one of them alone united with the ass, it might be said that the cause of the mule’s being unable to generate was the unlikeness of that one to the generative fluid of the ass; but, as it is, whatever be the character of that generative fluid with which it unites in the ass, such it is also in the animal of its own kind. Then, again, the argument is intended to apply to both male and female mules alike, but the male does generate at seven years of age, it is said; it is the female alone that is entirely sterile, and even she is so only because she does not complete the development of the embryo, for a female mule has been known to conceive.

Perhaps an abstract proof might appear to be more plausible than those already given; I call it abstract because the more general it is the further is it removed from the special principles involved. It runs somewhat as follows. From male and female of the same species there are born in course of nature male and female of the same species as the parents, e.g. male and female puppies from male and female dog. From parents of different species is born a young one different in species; thus if a dog is different from a lion, the offspring of male dog and lioness or of lion and bitch will be different from both parents. If this is so, then since (1) mules are produced of both sexes and are not different in species from one another, and (2) a mule is born of horse and ass and these are different in species from mules, it is impossible that anything should be produced from mules. For (1) another kind cannot be, because the product of male and female of the same species is also of the same species, and (2) a mule cannot be, because that is the product of horse and ass which are different in form, [and it was laid down that from parents different in form is born a different animal]. Now this theory is too general and empty. For all theories not based on the special principles involved are empty; they only appear to be connected with the facts without being so really. As geometrical arguments must start from geometrical principles, so it is with the others; that which is empty may seem to be something, but is really nothing. Now the basis of this particular theory is not true, for many animals of different species are fertile with one another, as was said before. So we must not inquire into questions of natural science in this fashion any more than any other questions; we shall be more likely to find the reason by considering the facts peculiar to the two kinds concerned, horse and ass. In the first place, each of them, if mated with its own kind, bears only one young one; secondly, the females are not always able to conceive from the male (wherefore breeders put the horse to the mare again at intervals). Indeed, both the mare is deficient in catamenia, discharging less than any other quadruped, and the she-ass does not admit the impregnation, but ejects the semen with her urine, wherefore men follow flogging her after intercourse. Again the ass is an animal of cold nature, and so is not wont to be produced in wintry regions because it cannot bear cold, as in Scythia and the neighbouring country and among the Celts beyond Iberia, for this country also is cold. For this cause they do not put the jackasses to the females at the equinox, as they do with horses, but about the summer solstice, in order that the ass-foals may be born in a warm season, for the mothers bear at the same season as that in which they are impregnated, the period of gestation in both horse and ass being one year. The animal, then, being, as has been said of such a cold nature, its semen also must be cold. A proof of this is that if a horse mount a female already impregnated by an ass he does not destroy the impregnation of the ass, but if the ass be the second to mount her he does destroy that of the horse because of the coldness of his own semen. When, therefore, they unite with each other, the generative elements are preserved by the heat of the one of them, that contributed by the horse being the hotter; for in the ass both the semen of the male and the material contributed by the female are cold, and those of the horse, in both sexes, are hotter. Now when either hot is added to cold or cold to hot so as to mix, the result is that the embryo itself arising from these is preserved and thus these animals are fertile when crossed with one another, but the animal produced by them is no longer fertile but unable to produce perfect offspring.

And in general each of these animals naturally tends towards sterility. The ass has all the disadvantages already mentioned, and if it should not begin to generate after the first shedding of teeth, it no longer generates at all; so near is the constitution of the ass to being sterile. The horse is much the same; it tends naturally towards sterility, and to make it entirely so it is only necessary that its generative secretion should become colder; now this is what happens to it when mixed with the corresponding secretion of the ass. The ass in like manner comes very near generating a sterile animal when mated with its own species. Thus when the difficulty of a cross contrary to nature is added, (when too even in the other case when united with their own species they with difficulty produce a single young one), the result of the cross, being still more sterile and contrary to nature, will need nothing further to make it sterile, but will be so of necessity.

We find also that the bodies of female mules grow large because the matter which is secreted in other animals to form the catamenia is diverted to growth. But since the period of gestation in such animals is a year, the mule must not only conceive, if she is to be fertile, but must also nourish the embryo till birth, and this is impossible if there are no catamenia. But there are none in the mule; the useless part of the nutriment is discharged with the excretion from the bladder — this is why male mules do not smell to the pudenda of the females, as do the other solid-hoofed ungulates, but only to the evacuation itself — and the rest of the nutriment is used up to increase the size of the body. Hence it is sometimes possible for the female to conceive, as has been known to happen before now, but it is impossible for her to complete the process of nourishing the embryo and bringing it to birth.

The male, again, may sometimes generate, both because the male sex is naturally hotter than the female and because it does not contribute any material substance to the mixture. The result in such cases is a ‘ginnus’, that is to say, a dwarf mule; for ‘ginni’ are produced also from the crossing of horse and ass when the embryo is diseased in the uterus. The ginnus is in fact like the so-called ‘metachoera’ in swine, for a ‘metachoerum’ also is a pig injured in the uterus; this may happen to any pig. The origin of human dwarfs is similar, for these also have their parts and their whole development injured during gestation, and resemble ginni and metachoera.