The Composition Pedals have already been noticed. Their use is so generally felt, that in addition to those attached to the Great Organ stops, there are usually two or three provided for the Swell of organs of even average size. In instruments that have a Pedal Organ of fair dimensions, the Great Organ composition pedals usually do, or at any rate should, act also on those of the Pedal, 'in proportion'; particularly where the latter has any Mutation, Mixture, or 16-feet Reed stops. In such cases a 'Piano Pedal' for reducing the Pedal Organ so that it may be available for use with the Swell or Choir, is very desirable.
Sometimes, instead of silencing some of the stops by composition pedals, they are rendered mute by means of a trap or ventil in the local wind-trunk, which, by closing, cuts off the supply of wind. This lessens the wear and tear of the mechanical parts of the organ. On the other hand the draw-stops, or registers, may all be duly prepared, and may announce that all is in readiness, yet if the ventils are forgotten, there may be as distinctly a false start as if there were 'no wind in.'
In his large organs Mr. Henry Willis introduces combination pistons projecting through the key-slips in lieu of composition pedals; and devotes the width over the pedal-board to pedals acting on the various couplers, etc.
Notice may now be taken of two substitutes which modern thought has devised for the first of the primary systems of organ mechanism already described under the title of 'Key-movement.'
1. In large organs the long trackers are apt to shorten in dry seasons, and to lengthen in wet ones, causing the touch in the one case to become shallow, in the other to become deep, and exposing the organ to ciphers. Protection is sought against these atmospheric disturbances, by varnishing the trackers and other woodwork; and the various mechanical parts of the instrument are also furnished with regulating screws and nuts by means of which the necessary length of these transmitters of the key-motion may be re-established when interrupted. Still, there are circumstances and distances, curves and creeping courses, which can scarcely be traversed by the rigid mechanism referred to. Seeing what had been accomplished by telegraphy, by which the most delicate movements could be transmitted with rapidity and precision, and to indefinite distances, the thought occurred as to whether it might be possible to apply the principle of electricity to the organ, in which case the keyboard would represent the manipulator and the pallets of the organ the receptors. To the late Dr. Gauntlett belongs the credit of having been the first to start this theoretical idea. His first proposal, made at the time of the Great Exhibition of 1851, was to play all the organs in the place at one and the same time; but the suggestion met with no response. When the intention of the Crystal Palace Company to build an immense organ was announced in 1852, he met the Provisional Committee and proposed the erection of facsimiles of the eight most celebrated continental organs in various parts of the Palace, and of playing them, either all together or separately, in the centre of the building; but this suggestion also remained unembodied. Dr. Gauntlett patented his invention in 1852, and in 1863 another plan was patented by Mr. Goundry; but no organs appear to have been built to illustrate the practicability of either of them.
In 1867 the late Mr. Barker erected an electric organ in the church of St. Augustin in Paris, which attracted the attention of Mr. Bryceson who was then paying a visit to the Paris Exhibition, and who made arrangements with Mr. Barker for introducing the electric system into England. Mr. Barker's English patent was taken out in January 1868. It protected his special applications for playing the manual and pedal organs; for coupling the various manuals as well as the pedals, either in the unison, or in the octave or sub-octave, and for commanding the large traps in the wind-trunks known in England as ventils, to which was afterwards added an arrangement for drawing the stops. Mr. Bryceson added in April 1868 a perfectly new form of pallet which offered no resistance in opening; and he subsequently introduced several other improvements, including an arrangement for using attenuated air instead of pressure; and Mr. Henry Willis took out a patent almost simultaneously with Mr. Bryceson for using exhaust and power alternately for actuating a 'floating valve,' in connection with a novel arrangement of draw-stop action; neither builder manifestly being aware of the conclusion arrived at by the other.
Among the electric organs erected or reconstructed by Mr. Bryceson are included St. Michael's, Cornhill; St. George's, Tufnel Park; St. Augustine's, Highbury; Milney Manor, etc.
2. A second substitute for the long tracker movements, etc., in large or separated organs, is the 'pneumatic tubular transmission system.' The germ of this application existed of course in the late Mr. Booth's contrivance (already noticed), which consisted of a tube receiving compressed wind at one end, and having a motor at the other; but there is as much difference between the primitive device of 1827 and the now perfected 'system,' as between the early trials of Papin and the stearn engines of Watt and Stephenson. It was not till 1867 that the principle was turned to practical account, when it was applied to an organ that was publicly shown at the Paris Exhibition of that year. Its importance was recognised by Mr. Henry Willia, who introduced it with improvements into his organ in St. Paul's Cathedral in 1874; and employed it extensively in that at the Alexandra Palace; and it was used by Messrs. Bryceson in the organ removed by them from St. Paul's to the Victoria Rooms, Bristol; by Mr. T. Hill in his organ at Manchester cathedral; by the Messrs. Bishop in the Yarmouth organ as rebuilt by them; by Messrs. Foster & Andrews at the City Temple; and by Messrs. Lewis & Co., for the Pedal Organ of their new instrument at Ripon.