an anonymous astronomical work, called Surya-siddhanta ("Knowledge from the Sun"), which by native authorities was ranked second only to the Brahma-siddhanta, but is of interest to us merely as furnishing evidence that Greek science influenced Indian science even before the time of Aryabhatta. The following centuries produced only two names of importance; namely, Cridhara, who wrote a Ganita-sara ("Quintessence of Calculation"), and Padmanabha, the author of an algebra. The science seems to have made but little progress it this time; for a work entitled Siddhantaciromani ("Diadem of an Astronomical System"), written by Bhaskara Acarya in 1150, stands little higher than that of Brahmagupta, written over 500 years earlier. The two most important mathematical chapters in this work are the Lilavati (="the beautiful," i.e. the noble science) and Viga-ganita (="root-extraction"), devoted to arithmetic and algebra. From now on, the Hindoos in the Brahmin schools seemed to content themselves with studying the masterpieces of their predecessors. Scientific intelligence decreases continually, and in modern times a very deficient Arabic work of the sixteenth century has been held in great authority.[7]
The mathematical chapters of the Brahma-siddhanta and Siddhantaciromani were translated into English by H. T. Colebrooke, London, 1817. The Surya-siddhanta was translated by E. Burgess, and annotated by W. D. Whitney, New Haven, Conn., 1860.
The grandest achievement of the Hindoos and the one which, of all mathematical inventions, has contributed most to the general progress of intelligence, is the invention of the principle of position in writing numbers. Generally we speak of our notation as the "Arabic" notation, but it should be called the "Hindoo" notation, for the Arabs borrowed it from the Hindoos. That the invention of this notation was