from the words of Poisson, himself a Frenchman, who rightly says that the differential calculus "consists in a system of rules proper for finding the differentials of all functions, rather than in the use which may be made of these infinitely small variations in the solution of one or two isolated problems."
A contemporary mathematician, whose genius excelled even that of the great Fermat, was Blaise Pascal (1623–1662). He was born at Clermont in Auvergne. In 1626 his father retired to Paris, where he devoted himself to teaching his son, for he would not trust his education to others. Blaise Pascal's genius for geometry showed itself when he was but twelve years old. His father was well skilled in mathematics, but did not wish his son to study it until he was perfectly acquainted with Latin and Greek. All mathematical books were hidden out of his sight. The boy once asked his father what mathematics treated of, and was answered, in general, "that it was the method of making figures with exactness, and of finding out what proportions they relatively had to one another." He was at the same time forbidden to talk any more about it, or ever to think of it. But his genius could not submit to be confined within these bounds. Starting with the bare fact that mathematics taught the means of making figures infallibly exact, he employed his thoughts about it and with a piece of charcoal drew figures upon the tiles of the pavement, trying the methods of drawing, for example, an exact circle or equilateral triangle. He gave names of his own to these figures and then formed axioms, and, in short, came to make perfect demonstrations. In this way he arrived unaided at the theorem that the sum of the three angles of a triangle is equal to two right angles. His father caught him in the act of studying this theorem, and was so astonished at the sublimity and force of his genius as to weep for joy. The father now gave