Jump to content

Page:A History of Mathematics (1893).djvu/238

From Wikisource
This page has been proofread, but needs to be validated.
NEWTON TO EULER.
219

of the calculus. Gottfried Wilhelm Leibniz (1646–1716) was born in Leipzig. No period in the history of any civilised nation could have been less favourable for literary and scientific pursuits than the middle of the seventeenth century in Germany. Yet circumstances seem to have happily combined to bestow on the youthful genius an education hardly otherwise obtainable during this darkest period of German history. He was brought early in contact with the best of the culture then existing. In his fifteenth year he entered the University of Leipzig. Though law was his principal study, he applied himself with great diligence to every branch of knowledge. Instruction in German universities was then very low. The higher mathematics was not taught at all. We are told that a certain John Kuhn lectured on Euclid's Elements, but that his lectures were so obscure that none except Leibniz could understand them. Later on, Leibniz attended, for a half-year, at Jena, the lectures of Erhard Weigel, a philosopher and mathematician of local reputation. In 1666 Leibniz published a treatise, De Arte Combinatoria, in which he does not pass beyond the rudiments of mathematics. Other theses written by him at this time were metaphysical and juristical in character. A fortunate circumstance led Leibniz abroad. In 1672 he was sent by Baron Boineburg on a political mission to Paris. He there formed the acquaintance of the most distinguished men of the age. Among these was Huygens, who presented a copy of his work on the oscillation of the pendulum to Leibniz, and first led the gifted young German to the study of higher mathematics. In 1673 Leibniz went to London, and remained there from January till March. He there became incidentally acquainted with the mathematician Pell, to whom he explained a method he had found on the summation of series of numbers by their differences. Pell told him that a similar formula had been published by Mouton