the electrical action that they fall outside of the receiver or even strike the inductor.
In this instrument the energy of the electrification is drawn from that of the falling drops.
212.] Several other electrical machines have been constructed in which the principle of electric induction is employed. Of these the most remarkable is that of Holtz, in which the carrier is a glass plate varnished with gum-lac and the inductors are pieces of pasteboard. Sparks are prevented from passing between the parts of the apparatus by means of two glass plates, one on each side of the revolving carrier plate. This machine is found to be very effective, and not to be much affected by the state of the atmosphere. The principle is the same as in the revolving doubler and the instruments developed out of the same idea, but as the carrier is an insulating plate and the inductors are imperfect conductors, the complete explanation of the action is. more difficult than in the case where the carriers are good conductors of known form and are charged and discharged at definite points.
213.] In the electrical machines already described sparks occur whenever the carrier comes in contact with a conductor at a different potential from its own.
Now we have shewn that whenever this occurs there is a loss of energy, and therefore the whole work employed in turning the machine is not converted into electrification in an available form, but part is spent in producing the heat and noise of electric sparks. I have therefore thought it desirable to shew how an electrical machine may be constructed which is not subject to this loss of efficiency. I do not propose it as a useful form of machine, but as an example of the method by which the contrivance called in heat-engines a regenerator may be applied to an electrical machine to prevent loss of work.
In the figure let represent hollow fixed conductors, so arranged that the carrier passes in succession within each of them. Of these and nearly surround the