given their relative position is as completely determined as if they formed part of the same rigid body.
512.] If we use rectangular coordinates and make
x
{\displaystyle x}
,
y
{\displaystyle y}
,
z
{\displaystyle z}
the coordinates of
P
{\displaystyle P}
, and
x
′
{\displaystyle x^{\prime }}
,
y
′
{\displaystyle y^{\prime }}
,
z
′
{\displaystyle z^{\prime }}
those of
P
′
{\displaystyle P^{\prime }}
, and if we denote by
l
{\displaystyle l}
,
m
{\displaystyle m}
,
n
{\displaystyle n}
and by
l
′
{\displaystyle l^{\prime }}
,
m
′
{\displaystyle m^{\prime }}
,
n
′
{\displaystyle n^{\prime }}
the direction-cosines of
P
Q
{\displaystyle PQ}
, and of
P
′
Q
′
{\displaystyle P^{\prime }Q^{\prime }}
respectively, then
d
x
d
s
=
l
{\displaystyle {\frac {dx}{ds}}=l}
,
d
y
d
s
=
m
{\displaystyle {\frac {dy}{ds}}=m}
,
d
z
d
s
=
n
{\displaystyle {\frac {dz}{ds}}=n}
,
d
x
′
d
s
′
=
l
′
{\displaystyle {\frac {dx^{\prime }}{ds^{\prime }}}=l^{\prime }}
,
d
y
′
d
s
′
=
m
′
{\displaystyle {\frac {dy^{\prime }}{ds^{\prime }}}=m^{\prime }}
,
d
z
′
d
s
′
=
n
′
{\displaystyle {\frac {dz^{\prime }}{ds^{\prime }}}=n^{\prime }}
,
(2)
and
l
(
x
′
−
x
)
+
m
(
y
′
−
y
)
+
n
(
z
′
−
z
)
=
{\displaystyle l(x^{\prime }-x)+m(y^{\prime }-y)+n(z^{\prime }-z)={}}
r
cos
θ
{\displaystyle r\cos \theta }
,
l
′
(
x
′
−
z
)
+
m
′
(
y
′
−
y
)
+
n
′
(
z
′
−
z
)
=
{\displaystyle l^{\prime }(x^{\prime }-z)+m^{\prime }(y^{\prime }-y)+n^{\prime }(z^{\prime }-z)={}}
−
r
cos
θ
′
{\displaystyle -r\cos \theta ^{\prime }}
,
l
l
′
+
m
m
′
+
n
n
′
=
cos
ϵ
{\displaystyle ll^{\prime }+mm^{\prime }+nn^{\prime }=\cos \epsilon }
,
(3)
where
ϵ
{\displaystyle \epsilon }
is the angle between the directions of the elements themselves, and
cos
ϵ
=
−
cos
θ
cos
θ
′
+
sin
θ
sin
θ
′
cos
η
{\displaystyle \cos \epsilon =-\cos \theta \cos \theta ^{\prime }+\sin \theta \sin \theta ^{\prime }\cos \eta }
.
(4)
Again
r
2
=
(
x
′
−
x
)
2
+
(
y
′
−
y
)
2
+
(
z
′
−
z
)
2
{\displaystyle r^{2}=(x^{\prime }-x)^{2}+(y^{\prime }-y)^{2}+(z^{\prime }-z)^{2}}
,
(5)
whence
r
d
r
d
s
{\displaystyle r{\frac {dr}{ds}}}
=
−
(
x
′
−
x
)
d
x
d
s
−
(
y
′
−
y
)
d
y
d
s
−
(
z
′
−
z
)
d
z
d
s
{\displaystyle {}=-(x^{\prime }-x){\frac {dx}{ds}}-(y^{\prime }-y){\frac {dy}{ds}}-(z^{\prime }-z){\frac {dz}{ds}}}
,
=
−
r
cos
θ
{\displaystyle {}=-r\cos \theta }
.
(6)
Similarly
r
d
r
d
s
′
{\displaystyle r{\frac {dr}{ds^{\prime }}}}
=
(
x
′
−
x
)
d
x
′
d
s
′
+
(
y
′
−
y
)
d
y
′
d
s
′
+
(
z
′
−
z
)
d
z
′
d
s
′
{\displaystyle {}=(x^{\prime }-x){\frac {dx^{\prime }}{ds^{\prime }}}+(y^{\prime }-y){\frac {dy^{\prime }}{ds^{\prime }}}+(z^{\prime }-z){\frac {dz^{\prime }}{ds^{\prime }}}}
,
=
−
r
cos
θ
′
{\displaystyle {}=-r\cos \theta ^{\prime }}
;
and differentiating
r
d
r
d
s
{\displaystyle r{\frac {dr}{ds}}}
with respect to
s
′
{\displaystyle s^{\prime }}
,
r
d
2
r
d
s
d
s
′
+
d
r
d
s
d
r
d
s
′
{\displaystyle r{\frac {d^{2}r}{ds\,ds^{\prime }}}+{\frac {dr}{ds}}{\frac {dr}{ds^{\prime }}}}
=
−
d
x
d
s
d
x
′
d
s
′
−
d
y
d
s
d
y
′
d
s
′
−
d
z
d
s
d
z
′
d
s
′
{\displaystyle {}=-{\frac {dx}{ds}}{\frac {dx^{\prime }}{ds^{\prime }}}-{\frac {dy}{ds}}{\frac {dy^{\prime }}{ds^{\prime }}}-{\frac {dz}{ds}}{\frac {dz^{\prime }}{ds^{\prime }}}}
=
−
(
l
l
′
+
m
m
′
+
n
n
′
)
{\displaystyle {}=-(ll^{\prime }+mm^{\prime }+nn^{\prime })}
=
−
cos
ϵ
{\displaystyle {}=-\cos \epsilon }
.
(7)
We can therefore express the three angles
θ
{\displaystyle \theta }
,
θ
′
{\displaystyle \theta ^{\prime }}
, and
η
{\displaystyle \eta }
, and the auxiliary angle
ϵ
{\displaystyle \epsilon }
in terms of the differential coefficients of
r
{\displaystyle r}
with respect to
s
{\displaystyle s}
and
s
′
{\displaystyle s^{\prime }}
as follows,
cos
θ
{\displaystyle \cos \theta }
=
−
d
r
d
s
{\displaystyle {}=-{\frac {dr}{ds}}}
,
cos
θ
′
{\displaystyle \cos \theta ^{\prime }}
=
−
d
r
d
s
′
{\displaystyle {}=-{\frac {dr}{ds^{\prime }}}}
,
cos
ϵ
{\displaystyle \cos \epsilon }
=
−
r
d
2
r
d
s
d
s
′
−
d
r
d
s
d
r
d
s
′
{\displaystyle {}=-r{\frac {d^{2}r}{ds\,ds^{\prime }}}-{\frac {dr}{ds}}{\frac {dr}{ds^{\prime }}}}
,
sin
θ
sin
θ
′
cos
η
{\displaystyle \sin \theta \sin \theta ^{\prime }\cos \eta }
=
−
r
d
2
r
d
s
d
s
′
{\displaystyle {}=-r{\frac {d^{2}r}{ds\,ds^{\prime }}}}
.
(8)