242
DIMENSIONS OF UNITS.
[626.
founded on the definition of the unit of electricity, Arts. 41, 42, and may be deduced from the equation,
E
=
e
L
2
{\displaystyle {\mathfrak {E}}={\frac {e}{L^{2}}}}
,
which expresses that the resultant force
E
{\displaystyle {\mathfrak {E}}}
at any point, due to the action of a quantity of electricity
e
{\displaystyle e}
at a distance
L
{\displaystyle L}
, is found by dividing
e
{\displaystyle e}
by
L
2
{\displaystyle L^{2}}
. Substituting the equations of dimension (1) and (8), we find
[
L
M
e
T
2
]
=
[
e
L
2
]
{\displaystyle \left[{\frac {LM}{eT^{2}}}\right]=\left[{\frac {e}{L^{2}}}\right]}
,
[
m
L
T
]
=
[
M
m
T
]
{\displaystyle \left[{\frac {m}{LT}}\right]=\left[{\frac {M}{mT}}\right]}
,
whence
[
e
]
=
[
L
3
2
M
1
2
T
−
1
]
{\displaystyle [e]=[L^{\frac {3}{2}}M^{\frac {1}{2}}T^{-1}]}
,
m
=
[
L
1
2
M
1
2
]
{\displaystyle m=[L^{\frac {1}{2}}M^{\frac {1}{2}}]}
,
in the electrostatic system.
The electromagnetic system is founded on a precisely similar definition of the unit of strength of a magnetic pole, Art. 374, leading to the equation
H
=
m
L
2
{\displaystyle {\mathfrak {H}}={\frac {m}{L^{2}}}}
.
whence
[
e
L
T
]
=
[
M
e
T
]
{\displaystyle \left[{\frac {e}{LT}}\right]=\left[{\frac {M}{eT}}\right]}
.
[
L
M
m
T
2
]
=
[
m
L
2
]
{\displaystyle \left[{\frac {LM}{mT^{2}}}\right]=\left[{\frac {m}{L^{2}}}\right]}
,
and
[
e
]
=
[
L
1
2
M
1
2
]
{\displaystyle [e]=[L^{\frac {1}{2}}M^{\frac {1}{2}}]}
,
[
m
]
=
[
L
3
2
M
1
2
T
−
1
]
{\displaystyle [m]=[L^{\frac {3}{2}}M^{\frac {1}{2}}T^{-1}]}
,
in the electromagnetic system. From these results we find the dimensions of the other quantities.
626.]
Table of Dimensions.
Dimensions in
Symbol
Electrostatic System
Electromagnetic System
Quantity of electricity
e
{\displaystyle e}
[
L
3
2
M
1
2
T
−
1
]
{\displaystyle [L^{\frac {3}{2}}M^{\frac {1}{2}}T^{-1}]}
[
L
1
2
M
1
2
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}]}
.
Line-integral of electromotive force
E
{\displaystyle E}
[
L
1
2
M
1
2
T
−
1
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}T^{-1}]}
[
L
3
2
M
1
2
T
−
2
]
{\displaystyle [L^{\frac {3}{2}}M^{\frac {1}{2}}T^{-2}]}
.
Quantity of magnetism
m
{\displaystyle m}
[
L
1
2
M
1
2
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}]}
[
L
3
2
M
1
2
T
−
1
]
{\displaystyle [L^{\frac {3}{2}}M^{\frac {1}{2}}T^{-1}]}
.
Electrokinetic momentum of a circuit
p
{\displaystyle p}
Electric current
C
{\displaystyle C}
[
L
3
2
M
1
2
T
−
2
]
{\displaystyle [L^{\frac {3}{2}}M^{\frac {1}{2}}T^{-2}]}
[
L
1
2
M
1
2
T
−
1
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}T^{-1}]}
.
Magnetic potential
Ω
{\displaystyle \Omega }
Electric displacement
D
{\displaystyle {\mathfrak {D}}}
[
L
−
1
2
M
1
2
T
−
1
]
{\displaystyle [L^{-{\frac {1}{2}}}M^{\frac {1}{2}}T^{-1}]}
[
L
−
3
2
M
1
2
]
{\displaystyle [L^{-{\frac {3}{2}}}M^{\frac {1}{2}}]}
.
Surface-density
Electromotive force at a point
E
{\displaystyle {\mathfrak {E}}}
[
L
−
1
2
M
1
2
T
−
1
]
{\displaystyle [L^{-{\frac {1}{2}}}M^{\frac {1}{2}}T^{-1}]}
[
L
1
2
M
1
2
T
−
2
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}T^{-2}]}
.
Magnetic induction
B
{\displaystyle {\mathfrak {B}}}
[
L
−
3
2
M
1
2
]
{\displaystyle [L^{-{\frac {3}{2}}}M^{\frac {1}{2}}]}
[
L
−
1
2
M
1
2
T
−
1
]
{\displaystyle [L^{-{\frac {1}{2}}}M^{\frac {1}{2}}T^{-1}]}
.
Magnetic force
H
{\displaystyle {\mathfrak {H}}}
[
L
1
2
M
1
2
T
−
2
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}T^{-2}]}
[
L
−
1
2
M
1
2
T
−
2
]
{\displaystyle [L^{-{\frac {1}{2}}}M^{\frac {1}{2}}T^{-2}]}
.
Strength of current at a point
C
{\displaystyle {\mathfrak {C}}}
[
L
−
1
2
M
1
2
T
−
2
]
{\displaystyle [L^{-{\frac {1}{2}}}M^{\frac {1}{2}}T^{-2}]}
[
L
−
3
2
M
1
2
T
−
1
]
{\displaystyle [L^{-{\frac {3}{2}}}M^{\frac {1}{2}}T^{-1}]}
.
Vector potential
V
{\displaystyle {\mathfrak {V}}}
[
L
−
1
2
M
1
2
]
{\displaystyle [L^{-{\frac {1}{2}}}M^{\frac {1}{2}}]}
[
L
1
2
M
1
2
T
−
1
]
{\displaystyle [L^{\frac {1}{2}}M^{\frac {1}{2}}T^{-1}]}
.