701.]
COIL OF RECTANGULAR SECTION.
305
P
¯
=
{\displaystyle {\overline {P}}={}}
P
0
+
1
24
(
x
2
d
2
P
0
d
x
2
+
y
2
d
2
P
0
d
y
2
)
{\displaystyle P_{0}+{\frac {1}{24}}\left(x^{2}{\frac {d^{2}P_{0}}{dx^{2}}}+y^{2}{\frac {d^{2}P_{0}}{dy^{2}}}\right)}
+
1
960
(
x
4
d
4
P
0
d
x
4
+
y
4
d
4
P
0
d
y
4
)
+
1
576
x
2
y
2
d
4
P
0
d
x
2
d
y
2
+
&
c
.
{\displaystyle {}+{\frac {1}{960}}\left(x^{4}{\frac {d^{4}P_{0}}{dx^{4}}}+y^{4}{\frac {d^{4}P_{0}}{dy^{4}}}\right)+{\frac {1}{576}}x^{2}y^{2}{\frac {d^{4}P_{0}}{dx^{2}\,dy^{2}}}+\mathrm {\&c.} }
In the case of the coil, let the outer and inner radii be
A
+
1
2
ξ
{\displaystyle A+{\frac {1}{2}}\xi }
, and
A
−
1
2
ξ
{\displaystyle A-{\frac {1}{2}}\xi }
respectively, and let the distance of the planes of the windings from the origin lie between
B
+
1
2
η
{\displaystyle B+{\frac {1}{2}}\eta }
and
B
−
1
2
η
{\displaystyle B-{\frac {1}{2}}\eta }
, then the breadth of the coil is
η
{\displaystyle \eta }
, and its depth
ξ
{\displaystyle \xi }
, these quantities being small compared with
A
{\displaystyle A}
or
C
{\displaystyle C}
.
In order to calculate the magnetic effect of such a coil we may write the successive terms of the series as follows:—
G
0
=
π
B
C
(
1
+
1
24
2
A
2
−
B
2
C
4
ξ
2
−
1
8
A
2
C
4
η
2
)
{\displaystyle G_{0}=\pi {\frac {B}{C}}\left(1+{\frac {1}{24}}{\frac {2A^{2}-B^{2}}{C^{4}}}\xi ^{2}-{\frac {1}{8}}{\frac {A^{2}}{C^{4}}}\eta ^{2}\right)}
,
G
1
=
2
π
A
2
C
3
(
1
+
1
24
(
2
A
2
−
15
B
2
C
4
)
ξ
2
+
1
8
4
B
2
−
A
2
C
4
η
2
)
{\displaystyle G_{1}=2\pi {\frac {A^{2}}{C^{3}}}\left(1+{\frac {1}{24}}\left({\frac {2}{A^{2}}}-15{\frac {B^{2}}{C^{4}}}\right)\xi ^{2}+{\frac {1}{8}}{\frac {4B^{2}-A^{2}}{C^{4}}}\eta ^{2}\right)}
,
G
2
=
3
π
A
2
B
C
5
(
1
+
1
21
(
2
A
2
−
25
C
2
+
35
A
2
C
4
)
ξ
2
+
5
24
4
B
2
−
3
A
2
C
4
η
2
)
{\displaystyle G_{2}=3\pi {\frac {A^{2}B}{C^{5}}}\left(1+{\frac {1}{21}}\left({\frac {2}{A^{2}}}-{\frac {25}{C^{2}}}+{\frac {35A^{2}}{C^{4}}}\right)\xi ^{2}+{\frac {5}{24}}{\frac {4B^{2}-3A^{2}}{C^{4}}}\eta ^{2}\right)}
,
G
3
=
4
π
A
2
(
B
2
−
1
4
A
2
)
C
7
+
π
24
ξ
2
C
11
{
C
4
(
8
B
2
−
12
A
2
)
+
35
A
2
B
2
(
5
A
2
−
4
B
2
)
}
{\displaystyle G_{3}=4\pi {\frac {A^{2}(B^{2}-{\frac {1}{4}}A^{2})}{C^{7}}}+{\frac {\pi }{24}}{\frac {\xi ^{2}}{C^{11}}}\left\{C^{4}(8B^{2}-12A^{2})+35A^{2}B^{2}(5A^{2}-4B^{2})\right\}}
+
π
24
η
2
C
11
{
3
A
2
C
2
(
5
A
2
−
44
B
2
)
+
63
A
2
B
2
(
4
B
2
−
A
2
)
}
{\displaystyle {}+{\frac {\pi }{24}}{\frac {\eta ^{2}}{C^{11}}}\left\{3A^{2}C^{2}(5A^{2}-44B^{2})+63A^{2}B^{2}(4B^{2}-A^{2})\right\}}
,
&c., &c.;
g
1
=
π
a
2
{\displaystyle g_{1}=\pi a^{2}}
+
1
12
π
ξ
2
{\displaystyle {}+{\frac {1}{12}}\pi \xi ^{2}}
,
g
2
=
2
π
a
2
b
{\displaystyle g_{2}=2\pi a^{2}b}
+
1
6
π
b
ξ
2
{\displaystyle {}+{\frac {1}{6}}\pi b\xi ^{2}}
,
g
2
=
3
π
a
2
(
b
2
−
1
4
a
2
)
{\displaystyle g_{2}=3\pi a^{2}(b^{2}-{\frac {1}{4}}a^{2})}
+
π
8
ξ
2
(
2
b
2
−
3
a
2
)
+
π
4
η
2
a
2
{\displaystyle {}+{\frac {\pi }{8}}\xi ^{2}(2b^{2}-3a^{2})+{\frac {\pi }{4}}\eta ^{2}a^{2}}
,
&c., &c.
The quantities
G
0
{\displaystyle G_{0}}
,
G
1
{\displaystyle G_{1}}
,
G
2
{\displaystyle G_{2}}
, &c. belong to the large coil. The value of
ω
{\displaystyle \omega }
at points for which
r
{\displaystyle r}
is less than
C
{\displaystyle C}
is
ω
=
−
2
π
+
2
G
0
−
G
1
r
Q
1
(
θ
)
−
G
2
r
2
Q
2
(
θ
)
−
&
c
.
{\displaystyle \omega =-2\pi +2G_{0}-G_{1}rQ_{1}(\theta )-G_{2}r^{2}Q_{2}(\theta )-\mathrm {\&c.} }
The quantities
g
1
{\displaystyle g_{1}}
,
g
2
{\displaystyle g_{2}}
, &c. belong to the small coil. The value of
ω
′
{\displaystyle \omega ^{\prime }}
at points for which
r
{\displaystyle r}
is greater than
c
{\displaystyle c}
is
ω
′
=
g
1
1
r
2
Q
1
(
θ
)
+
g
2
1
r
3
Q
2
(
θ
)
+
&
c
.
{\displaystyle \omega ^{\prime }=g_{1}{\frac {1}{r^{2}}}Q_{1}(\theta )+g_{2}{\frac {1}{r^{3}}}Q_{2}(\theta )+\mathrm {\&c.} }
The potential of the one coil with respect to the other when the total current through the section of each coil is unity is
M
=
G
1
g
1
Q
1
(
θ
)
+
G
2
g
2
Q
2
(
θ
)
+
&
c
.
{\displaystyle M=G_{1}g_{1}Q_{1}(\theta )+G_{2}g_{2}Q_{2}(\theta )+\mathrm {\&c.} }
To find
M
{\displaystyle M}
by Elliptic Integrals.
701.] When the distance of the circumferences of the two circles