the direction of the magnetic force. From this we conclude, by the reasoning of Art. 821, that in the medium, when under the action of magnetic force, some rotatory motion is going on, the axis of rotation being in the direction of the magnetic forces; and that the rate of propagation of circularly-polarized light, when the direction of its vibratory rotation and the direction of the magnetic rotation of the medium are the same, is different from the rate of propagation when these directions are opposite.
The only resemblance which we can trace between a medium through which circularly-polarized light is propagated, and a medium through which lines of magnetic force pass, is that in both there is a motion of rotation about an axis. But here the resemblance stops, for the rotation in the optical phenomenon is that of the vector which represents the disturbance. This vector is always perpendicular to the direction of the ray, and rotates about it a known number of times in a second. In the magnetic phenomenon, that which rotates has no properties by which its sides can be distinguished, so that we cannot determine how many times it rotates in a second.
There is nothing, therefore, in the magnetic phenomenon which corresponds to the wave-length and the wave-propagation in the optical phenomenon. A medium in which a constant magnetic force is acting is not, in consequence of that force, filled with waves travelling in one direction, as when light is propagated through it. The only resemblance between the optical and the magnetic phenomenon is, that at each point of the medium something exists of the nature of an angular velocity about an axis in the direction of the magnetic force.
On the Hypothesis of Molecular Vortices.
822.] The consideration of the action of magnetism on polarized light leads, as we have seen, to the conclusion that in a medium under the action of magnetic force something belonging to the same mathematical class as an angular velocity, whose axis is in the direction of the magnetic force, forms a part of the phenomenon.
This angular velocity cannot be that of any portion of the medium of sensible dimensions rotating as a whole. We must therefore conceive the rotation to be that of very small portions of the medium, each rotating on its own axis. This is the hypothesis of molecular vortices.
The motion of these vortices, though, as we have shewn (Art. 575),