Jump to content

Page:A Treatise on Electricity and Magnetism - Volume 2.djvu/466

From Wikisource
This page has been proofread, but needs to be validated.
434]
ACTION AT A DISTANCE.
[859.

Differentiating (26) with respect to , we find


(27)


We find that the term involving is the same as before in (6).

The term whose sign alters with that of is .

859.] If we now calculate by the formula of Gauss (equation (18)), the resultant electrical force in the direction of the second element arising from the action of the first element , we obtain


(28)


As in this expression there is no term involving the rate of variation of the current , and since we know that the variation of the primary current produces an inductive action on the secondary circuit, we cannot accept the formula of Gauss as a true expression of the action between electric particles.

860.] If, however, we employ the formula of Weber, (19), we obtain


(29)


or (30)


If we integrate this expression with respect to and , we obtain for the electromotive force on the second circuit


(31)


Now, when the first circuit is closed,



Hence (32)


But (33)


Hence we may write the electromotive force on the second circuit


(34)


which agrees with what we have already established by experiment; Art. 539.