MIXTURE & BALANCE
37
(62) This is a table of five mixtures which make neutral gray:
Opposites | Red | & | Blue-green | Each pair of which unites in neutral gray. | ||
Yellow | Purple-blue | |||||
Green | Red-purple | |||||
Blue | Yellow-red | |||||
Purple | Green-yellow |
(63) But if, instead of mixing these opposite hues, we place them side by side, the eye is so stimulated by their difference that each seems to gain in strength; i.e., each enhances the other when separate, but destroys the other when mixed. This is a very interesting point to be more fully illustrated by the help of a color wheel in Chapter V., paragraph 106. What we need to remember is that the mixture of neighborly hues makes them less stimulating to the eye, because they resemble each other, while a mixture of opposite hues extinguishes both in a neutral gray.
Hues once removed, and their mixture.
(64) There remains the question, What will happen if we mix, not two neighbors, nor two opposites, but a pair of hues once removed in the circle, such as red and green? A line joining this pair does not pass through the neutral centre, but to one side nearer yellow, and blue shows that this mixture falls between neutral gray and yellow, partaking somewhat of each. In the same way a line joining yellow and blue shows that their mixture contains both green and gray. Indeed, a line joining any two colors in the circuit may be said to describe their union. A radius crossing this line passes to some hue on the circumference, and describes by its intersection with the first line