Jump to content

Page:A short history of astronomy(1898).djvu/284

From Wikisource
This page has been validated.
224
A Short History of Astronomy
[Ch. IX.

passed over here, but certain results of special astronomical importance require to be mentioned.

Galilei, as we have seen (chapter vi., §§ 130, 133), was the first to enunciate the law that a body when once in motion continues to move in the same direction and at the same speed unless some cause is at work to make it change its motion. This law is given by Newton in the form already quoted in § 130, as the first of three fundamental laws, and is now commonly known as the First Law of Motion.

Galilei also discovered that a falling body moves with continually changing velocity, but with a uniform acceleration (chapter vi., § 133), and that this acceleration is the same for all bodies (chapter vi., § 116). The tendency of a body to fall having been generally recognised as due to the earth, Galilei's discovery involved the recognition that One effect of one body on another may be an acceleration produced in its motion. Newton extended this idea by shewing that the earth produced an acceleration in the motion of the moon, and the sun in the motion of the planets, and was led to the general idea of acceleration in a body's motion, which might be due in a variety of ways to the action of other bodies, and which could conveniently be taken as a measure of the effect produced by one body on another.

180. To these ideas Newton added the very important and difficult conception of mass.

If we are comparing two different bodies of the same material but of different sizes, we are accustomed to think of the larger one as heavier than the other. In the same way we readily think of a ball of lead as being heavier than a ball of wood of the same size. The most prominent idea connected with "heaviness" and "lightness" is that of the muscular effort required to support or to lift the body in question; a greater effort, for example, is required to hold the leaden ball than the wooden one. Again, the leaden ball if supported by an elastic string stretches it farther than does the wooden ball; or again, if they are placed in the scales of a balance, the lead sinks and the wood rises. All these effects we attribute to the "weight" of the two bodies, and the weight we are mostly accustomed