Jump to content

Page:A short history of astronomy(1898).djvu/290

From Wikisource
This page has been validated.
230
A Short History of Astronomy
[Ch. IX.

motion of the planets is one of extreme difficulty (cf. chapter xi., § 228), and Newton was unable to solve it with anything like completeness, yet he was able to point out certain general effects which must result from the mutual action of the planets, the most interesting being the slow forward motion of the apses of the earth's orbit, which had long ago been noticed by observing astronomers (chapter iii., § 59). Newton also pointed out that Jupiter, on account of its great mass, must produce a considerable perturbation in the motion of its neighbour Saturn, and thus gave some explanation of an irregularity first noted by Horrocks (chapter viii., § 156).

184. The motion of the moon presents special difficulties, but Newton, who was evidently much interested in the problems of lunar theory, succeeded in overcoming them much more completely than the corresponding ones connected with the planets.

The moon's motion round the earth is primarily due to the attraction of the earth; the perturbations due to the other planets are insignificant; but the sun, which though at a very great distance has an enormously greater mass than the earth, produces a very sensible disturbing effect on the moon's motion. Certain irregularities, as we have seen (chapter ii., §§ 40, 48; chapter v., § 111), had already been discovered by observation. Newton was able to shew that the disturbing action of the sun would necessarily produce perturbations of the same general character as those thus recognised, and in the case of the motion of the moon's nodes and of her apogee he was able to get a very fairly accurate numerical result;[1] and he also discovered a number of other irregularities, for the most part very small, which had not hitherto been noticed. He indicated also the existence of certain irregularities in the motions of Jupiter's and Saturn's moons analogous to those which occur in the case of our moon.

  1. It is commonly stated that Newton's value of the motion of the moon's apses was only about half the true value. In a scholium of the Principia to prop. 35 of the third book, given in the first edition but afterwards omitted, he estimated the annual motion at 40°, the observed value being about 41°. In one of his unpublished papers, contained in the Portsmouth collection, he arrived at 39° by a process which he evidently regarded as not altogether satisfactory.