accurate and careful than Bradley. But in his paper on aberration (1729) we find him writing:—
"I have likewise met with some small varieties in the declination of other stars in different years which do not seem to proceed from the same cause. . . . But whether these small alterations proceed from a regular cause, or are occasioned by any change in the materials, etc., of my instrument, I am not yet able fully to determine."
The slender clue thus obtained was carefully followed up and led to a second striking discovery, which affords one of the most beautiful illustrations of the important results which can be deduced from the study of "residual phenomena." Aberration causes a star to go through a cyclical series of changes in the course of a year; if therefore at the end of a year a star is found not to have returned to its original place, some other explanation of the motion has to be sought. Precession was one known cause of such an alteration; but Bradley found, at the end of his first year's set of observations at Wansted, that the alterations in the positions of various stars differed by a minute amount (not exceeding 2") from those which would have resulted from the usual estimate of precession; and that, although an alteration in the value of precession would account for the observed motions of some of these stars, it would have increased the discrepancy in the case of others. A nutation or nodding of the earth's axis had, as we have seen (§ 207), already presented itself to him as a possibility; and although it had been shewn to be incapable of accounting for the main phenomenon due to aberration it might prove to be a satisfactory explanation of the much smaller residual motions. It soon occurred to Bradley that such a nutation might be due to the action of the moon, as both observation and the Newtonian explanation of precession indicated:—