Jump to content

Page:A short history of astronomy(1898).djvu/356

From Wikisource
This page has been validated.
290
A Short History of Astronomy
[Ch. XI.

of the three bodies can always be regarded as exercising only a small influence on the relative motion of the other two, but also by the facts that the orbits of the planets and satellites do not differ much from circles, and that the planes of their orbits are in no case inclined at large angles to any one of them, such as the ecliptic; in other words, that the eccentricities and inclinations are small quantities.

Thus simplified, the problem has been found to admit of solutions of considerable accuracy by methods of approximation.[1]

In the case of the system formed by the sun, earth, and moon, the characteristic feature is the great distance of the sun, which is the disturbing body, from the other two bodies; in the case of the sun and two planets, the enormous mass of the sun as compared with the disturbing planet is the important factor. Hence the methods of treatment suitable for the two cases differ, and two substantially distinct branches of the subject, lunar theory and planetary theory, have developed. The problems presented by the motions of the satellites of Jupiter and Saturn, though allied to those of the lunar theory, differ in some important respects, and are usually treated separately.

229. As we have seen, Newton made a number of important steps towards the solution of his problem, but little was done by his successors in his own country. On the Continent also progress was at first very slow. The Principia was read and admired by most of the leading mathematicians of the time, but its principles were not accepted, and Cartesianism remained the prevailing philosophy. A forward step is marked by the publication by the Paris Academy of Sciences in 1720 of a memoir written by the Chevalier de Louville (1671–1732) on the basis of Newton's principles; ten years later the Academy awarded a prize to an essay on the planetary motions written by John Bernouilli (1667–1748) on Cartesian principles, a Newtonian essay being put second. In 1732 Maupertuis (chapter x., § 221) published a treatise on the figure of the

  1. The arithmetical processes of working out, figure by figure, a non-terminating decimal or a square root are simple cases of successive approximation.