Great of Prussia, and preferred to keep his independence, though he retained the friendship of both sovereigns and accepted a small pension from the latter. He lived extremely simply, and notwithstanding his poverty was very generous to his foster-mother, to various young students, and to many others with whom he came into contact.
233. Euler, Clairaut, and D'Alembert all succeeded in obtaining independently and nearly simultaneously solutions of the problem of three bodies in a form suitable for lunar theory. Euler published in 1746 some rather imperfect Tables of the Moon, which shewed that he must have already obtained his solution. Both Clairaut and D'Alembert presented to the Academy in 1747 memoirs containing their respective solutions, with applications to the moon as well as to some planetary problems. In each of these memoirs occurred the same difficulty which Newton had met with: the calculated motion of the moon's apogee was only about half the observed result. Clairaut at first met this difficulty by assuming an alteration in the law of gravitation, and got a result which seemed to him satisfactory by assuming gravitation to vary partly as the inverse square and partly as the inverse cube of the distance.[1] Euler also had doubts as to the correctness of the inverse square. Two years later, however (1749), on going through his original calculation again, Clairaut discovered that certain terms, which had appeared unimportant at the beginning of the calculation and had therefore been omitted, became important later on. When these were taken into account, the motion of the apogee as deduced from theory agreed very nearly with that observed. This was the first of several cases in which a serious discrepancy between theory and observation has at first discredited the law of gravitation, but has subsequently been explained away, and has thereby given a new verification of its accuracy. When Clairaut had announced his discovery, Euler arrived by a fresh calculation at substantially the same result, while D'Alembert by carrying the approximation further obtained one that was slightly more accurate. A fresh calculation of the motion of the moon by Clairaut won the prize on the subject offered by the St. Petersburg Academy, and was
- ↑ I.e. he assumed a law of attraction represented by μ/r2 + ν/r3.