times of year by quantities so small that they might fairly be attributed to errors of observation.
This problem was much more difficult than might at first sight appear, on account of the great difficulty experienced in Greek times and long afterwards in getting satisfactory observations of the sun. As the sun and stars are not visible at the same time, it is not possible to measure directly the distance of the sun from neighbouring stars and so to fix its place on the celestial sphere. But it
Fig. 17.—The eccentric.
is possible, by measuring the length of the shadow cast by a rod at midday, to ascertain with fair accuracy the height of the sun above the horizon, and hence to deduce its distance from the equator, or the declination (figs. 3, 14). This one quantity does not suffice to fix the sun's position, but if also the sun's right ascension (§ 33), or its distance east and west from the stars, can be accurately ascertained, its place on the celestial sphere is completely determined. The methods available for determining this second quantity were, however, very imperfect. One method was to note the time between the passage of the sun across some fixed position in the sky (e.g. the meridian), and the passage of