Page:Advanced Automation for Space Missions.djvu/12

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

The growth in capability of onboard machine intelligence will make possible many missions (OAST, 1980) technically or economically infeasible without it. The startling success of the recent Viking and Voyager robot explorers has demonstrated the tremendous potential of spacecraft controllers even when computer memory alone is augmented. Earlier spacecraft computers were limited to carrying out activity sequences entirely predetermined by programmed instructions; the advanced Viking and Voyager machines could be reprogrammed remotely to enable them to perform wholly different missions than originally planned - a flexibility that ultimately yielded more and better data than ever before.


1.2.1 NASA Study Group on Machine Intelligence and Robotics (1977-78)


Recognizing the tremendous potential for advanced automation in future space mission planning and development, and suspecting that NASA might not be utilizing fully the most recent results in modern computer science and robotics research, Stanley Sadin at NASA Headquarters requested Ewald Heer at the Jet Propulsion Laboratory (JPL) ta organize the NASA Study Group on Machine Intelligence and Robotics, chaired by Carl Sagan. The Study Group was composed of many leading researchers from almost all major centers in the fields of artificial intelligence, computer science, and autonomous systems in the United States. It included NASA personnel, scientists who worked on previous NASA missions, and experts in computer science who had little or no prior contact with NASA. The Study Group met as a full working group or as subcommittees between June 1977 and December 1978, and devoted about 2500 man-hours to an examination of the influence of current machine intelligence and robotics research on the full range of space agency activities, and recommended ways that these subjects could assist NASA in future missions (Sagan,1980).

After visiting a number of NASA Centers and facilities over a two-year period, the Study Group reached four major conclusions:

  • NASA is 5 to 15 years behind the leading edge in computer science and technology.
  • Technology decisions are, to a great degree, dictated by specific mission goals, thus powerfully impeding NASA utilization of modern computer science and automation techniques. Unlike its pioneering work in other areas of science and technology, NASA's use of computer science has been conservative and unimaginative.
  • The overall importance of machine intelligence and robotics for NASA has not been widely appreciated within the agency, and NASA has made no serious effort to attract bright, young scientists in these fields.
  • The advances and developments in machine intelligence and robotics needed to make future space missions economical and feasible will not happen without a major long-term commitment and centralized, coordinated support.

The Study Group recommended that NASA should adopt a policy of vigorous and imaginative research in computer science, machine intelligence, and robotics; that NASA should introduce advanced computer science technology into its Earth orbital and planetary missions, and should emphasize research programs with a multimission focus; and that mission objectives should be designed flexibly to take best advantage of existing and likely future technological opportunities.

The Study Group concluded its deliberations by further recommending that (a) the space agency establish a focus for computer science and technology at NASA Headquarters to coordinate R&D activities; (b) computer scientists should be added to the agency advisory structure; (c) a task group should be formed to examine the desirability, feasibility, and general specification of an all-digital, text handling, intelligent communication system for the transfer of information between NASA Centers; and (d) close liaison should be maintained between NASA and the Defense Mapping Agency's (DMA) Pilot Digital Operations Project because of the similarity of interests.


1.2.2 Woods Hole New Directions Workshop (1979)


Soon after the NASA Study Group on Machine Intelligence and Robotics completed its work, the NASA Advisory Council (NAC) convened a New Directions Workshop at Woods Hole in June,1979. The NAC, a senior group of scientists, engineers, sociologists, economists, and authors chaired by William Nierenberg (Director, Scripps Institute of Oceanography), had become concerned that people in the space program "might have lost some of their creative vitality and prophetic vision of the future" (Bekey and Naugle, 1980). Before setting off for Woods Hole, 30 workshop members assembled at NASA Headquarters for briefings on the agency's current program and long range plans, the projected capabilities of the Space Transportation System, and various interesting concepts that had not yet found their way into formal NASA planning. The Workshop members then divided themselves into eight working groups, one of which, the Telefactors Working Group, was charged with examining possible future applications of very advanced automation technologies in space mission planning and implementation.

The Telefactors Working Group recognized that the cost of traditional space operations, even if transportation becomes relatively inexpensive, makes many proposed