Page:Advanced Automation for Space Missions.djvu/162

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

Appendix 4A: Lunar Supply Of A Low Earth Orbit Station: Derivation Of Formulas


The mass brought to LEO from the Moon is MPL + MLAN where MPL is the mass of the payload of lunar soil and MLAN is the mass of the LANDER system that carries it. The LANDER must have sufficient tankage to carry payload plus the propellant to lift off from the Moon (MPR4), or to carry the hydrogen required on the Moon plus the propellant to carry the system to the Moon from the OTV (MPR2+3 = MPR2 + MPR3 the propellant requirements for burns two and three), whichever is greater. The fact that δV4 ~ δV2 + δV3 and that MPL >> MH where MH is the mass of hydrogen carried to the Moon, makes it clear that the former tankage requirement is the more stringent. It has therefore been assumed that:

MLAN = MLS + aMPL + BMPR4

where MLS is the mass of the LANDER structure and a and B are the tankage fractions for the payload and propellant, respectively. For all burns and for both the OTV and the LANDER B is assumed to be the same.

On the lunar surface prior to takeoff, the mass of the LANDER system is:

MLAN + MPL + MPR4 = (MPL + MLAN)eδV4/c = (MPL + MLS+ aMPL + BMPR4)eδV4/c

Therefore,

where c is exhaust velocity. Therefore,

Kn = eδVn/c-1

Since the OTV and LANDER are fueled at LEO, the only hydrogen carried to the Moon is that required in MPR4. If MH is defined as the mass of hydrogen carried to the lunar surface, then

where BH is the hydrogen fraction in the propellant.

The mass landed on the Moon must be:

The payload for the OTV is therefore

(MLAN + MH)eδV2+3/c

where:

δV2+3 = δV2 + δV3
MPR2+3 = (MLAN + MH)(eδV2+3/c - 1) = K2+3(MLAN + MH)

and

MOTV = MOS + BMPR1

for MOS defined as OTV structure mass.

The mass leaving LEO is therefore:

MOTV + MPR1 + (MLAN + MH)eδV2 + 3/c

where:

MPR1 = [MOTV + (MLAN + MH)eδV2+3/c](eδV1/c - 1)
= K1[MOS + BMPR1 + (MLAN + MH)eδV2+2/c]
(1)