Page:Advanced Automation for Space Missions.djvu/164

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

But if

(Equation 2)

then

(Equation 3)

This is the mass of hydrogen that must be uplifted from Earth to gain 1 kg of extra lunar payload to LEO. If no OTV is to be used, return to equation (1); MOS is now zero. If it is assumed that the payload tankage is more than enough to hold MPR1, then the term BMPR1 also disappears. Following through with these changes, X becomes:

(Equation 4)

and

(Equation 5)

The text shows that this reduces the marginal propellant cost by a small amount. If extra tankage is required to hold MPR1 the advantage is probably wiped out.


4A.1 Numerical Equations


For simplicity, assume that the OTV starts in a circular 200 km orbit in the Earth-Moon plane and just reaches the Moon. Various relevant parameters used in the calculations are listed below.

  • dMoon = 384410 km
  • rEarth = 6378 km
  • rMoon = 1738 km
  • uEarth = 398600.3 km3/sec2
  • uMoon =4903 km3/sec2
  • LEO at 200 km altitude in place of lunar orbit
  • Perilune of transfer orbit at 50 km altitude

The circular orbital velocity at 200 km altitude is:

Vcir = 7.7843 km/sec

The transfer orbit has

aO = [(re + 200) + dMoon]/2 = 195,494 km

Therefore the spacecraft velocity upon leaving LEO is:

so δV1 = Vlaunch - Vcir = 3.2244 km/sec. This orbit has its apogee at the Moon's orbit and apogee velocity of Vapogee = 0.18679 km/sec. If the Moon has a circular orbit, its orbital velocity is VMoon = 1.02453 km/sec, hence, spacecraft velocity relative to the Moon is VMoon - Vapogee = Vinfinity = 0.8377 km/sec.

While passing 50 km above the lunar surface the OTV releases LANDER, which at once performs a burn to place it into a 1738 X 1788 km orbit around the Moon. The OTV's velocity relative to the Moon prior to separation is:

The semimajor axis of the orbit about the Moon is 1763 km and so the velocity of the LANDER at apolune is

The magnitude of the required orbital injection burn is therefore δV2 = V - Vapolune = 0.84303 km/sec. The LANDER then performs a half-orbit of the Moon and lands:

The lunar processor refuels the LANDER and loads it payload tanks with lunar soil. Takeoff from the Moon on trajectory that returns to LEO by way of aerobraking requires