Page:Amusements in mathematics.djvu/126

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
114
AMUSEMENTS IN MATHEMATICS.

The puzzle is to find the shortest way of performing the feat, which in itself is not difficult. Remember, a person cannot help himself by hanging on to the rope, the only way being to go down "with a bump," with the weight in the other basket as a counterpoise.

PROBLEMS CONCERNING GAMES.

"The little pleasure of the game."

Matthew Prior.

Every game lends itself to the propounding of a variety of puzzles. They can be made, as we have seen, out of the chessboard and the peculiar moves of the chess pieces. I will now give just a few examples of puzzles with playing cards and dominoes, and also go out of doors and consider one or two little posers in the cricket field, at the football match, and the horse race and motor-car race.

378.—DOMINOES IN PROGRESSION.

It will be seen that I have played six dominoes, in the illustration, in accordance with the ordinary rules of the game, 4 against 4, 1 against 1, and so on, and yet the sum of the spots on the successive dominoes, 4, 5, 6, 7, 8, 9, are in arithmetical progression; that is, the numbers taken in order have a common difference of 1. In how many different ways may we play six dominoes, from an ordinary box of twenty-eight, so that the numbers on them may lie in arithmetical progression? We must always play from left to right, and numbers in decreasing arithmetical progression (such as 9, 8, 7, 6, 5, 4) are not admissible.

379.—THE FIVE DOMINOES.

Here is a new little puzzle that is not difficult, but will probably be found entertaining by my readers. It will be seen that the five dominoes are so arranged in proper sequence (that is, with 1 against 1, 2 against 2, and so on), that the total number of pips on the two end dominoes is five, and the sum of the pips on the three dominoes in the middle is also five. There are just three other arrangements giving five for the additions. They are:—

(1—0) (0—0) (0—2) (2—1) (1—3)
(4—0) (0—0) (0—2) (2—1) (1—0)
(2—0) (0—0) (0—1) (1—3) (3—0)

Now, how many similar arrangements are there of five dominoes that shall give six instead of five in the two additions?

380.—THE DOMINO FRAME PUZZLE.

It will be seen in the illustration that the full set of twenty-eight dominoes is arranged in the form of a square frame, with 6 against 6, 2 against 2, blank against blank, and so on, as in the game. It will be found that the pips in the top row and left-hand column both add up 44. The pips in the other two sides sum to 59 and 32 respectively. The puzzle is to rearrange the dominoes in the same form so that all of the four sides shall sum to 44. Remember that the dominoes must be correctly placed one against another as in the game.

381.—THE CARD FRAME PUZZLE.

In the illustration we have a frame constructed from the ten playing cards, ace to ten of diamonds. The children who made it wanted the pips on all four sides to add up alike, but they failed in their attempt and gave it up as impossible. It will be seen that the pips in the