is to find out in just how many different ways this can be done.
If you simply turn the cards round so that one of the other two sides is nearest to you this will not count as different, for the order will be the same. Also, if you make the 4, 9, 5 change places with the 7, 3, 8, and at the same time exchange the 1 and the 6, it will not be different. But if you only change the 1 and the 6 it
will be different, because the order round the triangle is not the same. This explanation will prevent any doubt arising as to the conditions.
385.—"STRAND" PATIENCE.
The idea for this came to me when considering the game of Patience that I gave in the Strand Magazine for December, 1910, which has been reprinted in Ernest Bergholt's Second Book of Patience Games, under the new name of "King Albert."
Make two piles of cards as follows: 9 D, 8 S, 7 D, 6 S, 5 D, 4 S, 3 D, 2 S, 1 D, and 9 H, 8 C, 7 H, 6 C, 5 H, 4 C, 3 H, 2 C, 1 H, with the 9 of diamonds at the bottom of one pile and the 9 of hearts at the bottom of the other. The point is to exchange the spades with the clubs, so that the diamonds and clubs are still in numerical order in one pile and the hearts and spades in the other. There are four vacant spaces in addition to the two spaces occupied by the piles, and any card may be laid on a space, but a card can only be laid on another of the next higher value—an ace on a two, a two on a three, and so on. Patience is required to discover the shortest way of doing this. When there are four vacant spaces you can pile four cards in seven moves, with only three spaces you can pile them in nine moves, and with two spaces you cannot pile more than two cards. When you have a grasp of these and similar facts you will be able to remove a number of cards bodily and write down 7, 9, or whatever the number of moves may be. The gradual shortening of play is fascinating, and first attempts are surprisingly lengthy.
386.—A TRICK WITH DICE.
Here is a neat little trick with three dice. I ask you to throw the dice without my seeing them. Then I tell you to multiply the points of the first die by 2 and add 5; then multiply the result by 5 and add the points of the second die; then multiply the result by 10 and add the points of the third die. You then give me the total, and I can at once tell you the points thrown with the three dice. How do I do it? As an example, if you threw 1, 3, and 6, as in the illustration, the result you would give me would be 386, from which I could at once say what you had thrown.
387.—THE VILLAGE CRICKET MATCH.
In a cricket match, Dingley Dell v. All Muggleton, the latter had the first innings. Mr. Dumkins and Mr. Podder were at the wickets, when the wary Dumkins made a splendid late cut, and Mr. Podder called on him to run. Four runs were apparently completed, but the vigilant umpires at each end called, "three short," making six short runs in all. What number did Mr. Dumkins score? When Dingley Dell took their turn at the wickets their champions were Mr. Luffey and Mr. Struggles. The latter made a magnificent off-drive, and invited his colleague to "come along," with the result that the observant spectators applauded them for what was supposed to have been three sharp runs. But the umpires declared that there had been two short runs at each end—four in all. To what extent, if any, did this manœuvre increase Mr. Struggles's total?
388.—SLOW CRICKET.
In the recent county match between Wessex and Nincomshire the former team were at the wickets all day, the last man being put out a few minutes before the time for drawing stumps. The play was so slow that most of the spectators were fast asleep, and, on being awakened by one of the officials clearing the ground, we learnt that two men had been put out leg-before-wicket for a combined score of 19 runs; four men were caught for a combined score of 17 runs; one man was run out for a duck's egg; and the others were all bowled for 3 runs each. There were no extras. We were not told which of the men was the captain, but he made exactly 15 more than the average of his team. What was the captain's score?
389.—THE FOOTBALL PLAYERS.
"It is a glorious game!" an enthusiast was heard to exclaim. "At the close of last season,