Page:Amusements in mathematics.djvu/179

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
SOLUTIONS.
167

ing the puzzle how to find from these sides the number of counters or coins in each, and so check the results if they so wish.

Number. Side of Square. Side of Triangle. Sides of Two Triangles. Sides of Three Triangles.
36 6 8 6 + 5 5 + 5 + 3
1225 35 49 36 + 34 33 + 32 + 16
41616 204 288 204 + 203 192 + 192 + 95
1413721 1189 1681 1189 + 1188 1121 + 1120 + 560
48024900 6930 9800 6930 + 6929 6533 + 6533 + 3267
1631432881 40391 57121 40391 + 40390 38081 + 38080 + 19040

I should perhaps explain that the arrangements given in the last two columns are not the only ways of forming two and three triangles. There are others, but one set of figures will fully serve our purpose. We thus see that before Mrs, McAllister can claim her sixth £5 present she must save the respectable sum of £1,631,432,881.

138.—THE ARTILLERYMEN'S DILEMMA.

We were required to find the smallest number of cannon balls that we could lay on the ground to form a perfect square, and could pile into a square pyramid. I will try to make the matter clear to the merest novice.

1 2 3 4 5 6 7
1 3 6 10 15 21 28
1 4 10 20 35 56 84
1 5 14 30 55 91 140

Here in the first row we place in regular order the natural numbers. Each number in the second row represents the sum of the numbers in the row above, from the beginning to the number just over it. Thus 1, 2, 3, 4, added together, make 10. The third row is formed in exactly the same way as the second. In the fourth row every number is formed by adding together the number just above it and the preceding number. Thus 4 and 10 make 14, 20 and 35 make 55. Now, all the numbers in the second row are triangular numbers, which means that these numbers of cannon balls may be laid out on the ground so as to form equilateral triangles. The numbers in the third row will all form our triangular pyramids, while the numbers in the fourth row will all form square pyramids.

Thus the very process of forming the above numbers shows us that every square pyramid is the sum of two triangular pyramids, one of which has the same number of balls in the side at the base, and the other one ball fewer. If we continue the above table to twenty-four places, we shall reach the number 4,900 in the fourth row. As this number is the square of 70, we can lay out the balls in a square, and can form a square pyramid with them. This manner of writing out the series until we come to a square number does not appeal to the mathematical mind, but it serves to show how the answer to the particular puzzle may be easily arrived at by anybody. As a matter of fact, I confess my failure to discover any number other than 4,900 that fulfils the conditions, nor have I found any rigid proof that this is the only answer. The problem is a difficult one, and the second answer, if it exists (which I do not believe), certainly runs into big figures.

For the benefit of more advanced mathematicians I will add that the general expression for square pyramid numbers is

For this expression to be also a square number (the special case of 1 excepted) it is necessary that , where (the "Pellian Equation"). In the case of our solution above, n=24, p=5, t=2, q=7.

139.—THE DUTCHMEN'S WIVES.

The money paid in every case was a square number of shillings, because they bought 1 at 1s., 2 at 2s., 3 at 3s., and so on. But every husband pays altogether 63s. more than his wife, so we have to find in how many ways 6s may be the difference between two square numbers. These are the three only possible ways: the square of 8 less the square of 1, the square of 12 less the square of 9, and the square of 32 less the square of 31. Here 1, 9, and 31 represent the number of pigs bought and the number of shillings per pig paid by each woman, and 8, 12, and 32 the same in the case of their respective husbands. From the further information given as to their purchases, we can now pair them off as follows: Cornelius and Gurtrün bought 8 and 1; Elas and Katrhn bought 12 and 9; Hendrick and Anna bought 32 and 31. And these pairs represent correctly the three married couples.

The reader may here desire to know how we may determine the maximum number of ways in which a number may be expressed as the difierence between two squares, and how we are to find the actual squares. Any integer except 1, 4, and twice any odd number, may be expressed as the difference of two integral squares in as many ways as it can be split up into pairs of factors, counting 1 as a factor. Suppose the number to be 5,940. The factors are