second half-string must begin in one of these rows. This is now obvious, because they have to link together to form the complete string, and every square on an outside row is connected by a knight's move with similar squares only—that is, circled or non-circled as the case may be. The half-strings can, therefore, only be linked in the two central rows.
An image should appear at this position in the text. To use the entire page scan as a placeholder, edit this page and replace "{{missing image}}" with "{{raw image|Amusements in mathematics.djvu/240}}". Otherwise, if you are able to provide the image then please do so. For guidance, see Wikisource:Image guidelines and Help:Adding images. |
Now, there are just eight different first half-strings, and consequently also eight second half-strings. We shall see that these combine to form twelve complete strings, which is the total number that exist and the correct solution of our puzzle. I do not propose to give all the routes at length, but I will so far indicate them that if the reader has dropped any he will be able to discover which they are and work them out for himself without any difficulty. The following numbers apply to those in the above diagram.
The eight first half-strings are: 1 to 6 (2 routes); 1 to 8 (1 route); 1 to 10 (3 routes); 1 to 12 (1 route); and 1 to 14 (1 route). The eight second half-strings are: 7 to 20 (1 route); 9 to 20 (1 route); 11 to 20 (3 routes); 13 to 20 (1 route); and 15 to 20 (2 routes). Every different way in which you can link one half-string to another gives a different solution. These linkings will be found to be as follows: 6 to 13 (2 cases); 10 to 13 (3 cases); 8 to 11 (3 cases); 8 to 15 (2 cases); 12 to 9 (1 case); and 14 to 7 (1 case). There are, therefore, twelve different linkings and twelve different answers to the puzzle. The route given in the illustration with the greyhound will be found to consist of one of the three half-strings 1 to 10, linked to the half-string 13 to 20. It should be noted that ten of the solutions are produced by five distinctive routes and their reversals—that is, if you indicate these five routes by lines and then turn the diagrams upside down you will get the five other routes. The remaining two solutions are symmetrical (these are the cases where 12 to 9 and 14 to 7 are the links), and consequently they do not produce new solutions by reversal.
337.—THE FOUR KANGAROOS.
An image should appear at this position in the text. To use the entire page scan as a placeholder, edit this page and replace "{{missing image}}" with "{{raw image|Amusements in mathematics.djvu/240}}". Otherwise, if you are able to provide the image then please do so. For guidance, see Wikisource:Image guidelines and Help:Adding images. |
A pretty symmetrical solution to this puzzle is shown in the diagram. Each of the four kangaroos makes his little excursion and returns to his comer, without ever entering a square that has been visited by another kangaroo and without crossing the central line,. It will at once occur to the reader, as a possible improvement of the puzzle, to divide the board by a central vertical line and make the condition that this also shall not be crossed. This would mean that each kangaroo had to confine himself to a square 4 by 4, but it would be quite impossible, as I shall explain in the next, two puzzles.
338.—THE BOARD IN COMPARTMENTS.
An image should appear at this position in the text. To use the entire page scan as a placeholder, edit this page and replace "{{missing image}}" with "{{raw image|Amusements in mathematics.djvu/240}}". Otherwise, if you are able to provide the image then please do so. For guidance, see Wikisource:Image guidelines and Help:Adding images. |
In attempting to solve this problem it is first necessary to take the two distinctive compartments of twenty and twelve squares respectively and analyse them with a view to deter-