Page:Amusements in mathematics.djvu/243

From Wikisource
Jump to navigation Jump to search
There was a problem when proofreading this page.
SOLUTIONS.
231

knight's path can be arranged so as to leave either 7 and 13, 8 and 13, 5 and 7, or 5 and 13 in their original positions, the following four arrangements, in which 7 and 13 are unmoved, are the only ones that can be reached under the moving conditions. It therefore resolves itself into finding the fewest possible moves that will lead up to one of these positions. This is certainly no easy matter, and no rigid rules can be laid down for arriving at the correct answer. It is largely a matter for individual judgment, patient experiment, and a sharp eye for revolutions and position.

As a matter of fact, the position C can be reached in as few as sixty-six moves in the following manner: 12, 11, 15, 12, 11, 8, 4, 3, 2, 6, 5, 1, 6, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 12, 11, 3, 2, 5, 10, 15, 6, 1, 8, 4, 9, 8, 1, 6, 4, 9, 12, 2, 5, 10, 15, 4, 9, 12, 2, 5, 3, 11, 14, 2, 5, 14, 11 = 66 moves. Though this is the shortest that I know of, and I do not think it can be beaten, I cannot state positively that there is not a shorter way yet to be discovered. The most tempting arrangement is certainly A; but things are not what they seem, and C is really the easiest to reach.

If the bottom left-hand corner cell might be left vacant, the following is a solution in forty-five moves by Mr. R. Elrick: 15, 11, 10, 9, 13, 14, 11, 10, 7, 8, 4, 3, 8, 6, 9, 7, 12, 4, 6, 9, 5, 13, 7, 5, 13, 1, 2, 13, 5, 7, 1, 2, 13, 8, 3, 6, 9, 12, 7, 11, 14, 1, 11, 14, 1. But every man has moved.

344.—THE KENNEL PUZZLE.

The first point is to make a choice of the most promising knight's string and then consider the question of reaching the arrangement in the fewest moves. I am strongly of opinion that the best string is the one represented in the following diagram, in which it will be seen that each successive number is a knight's move from the preceding one, and that five of the dogs (1, 5, 10, 15, and 20) never leave their original kennels.

This position may be arrived at in as few as forty-six moves, as follows: 16—21, 16—22, 16—23, 17—16, 12—17, 12—22, 12—21, 7—12, 7—17, 7—22, 11—12, 11—17, 2—7, 2—12, 6—11, 8—7, 8—6, 13—8, 18—13, 11—18, 2—17, 18—12, 18—7, 18—2, 13—7, 3—8, 3—13, 4—3, 4—8, 9—4, 9—3, 14—9, 14—4, 19—14, 19—9, 3—14, 3—19, 6—12, 6—13, 6—14, 17—11, 12—16, 2—12, 7—17, 11—13, 16—18=46 moves. I am, of course, not able to say positively that a solution cannot be discovered in fewer moves, but I believe it will be found a very hard task to reduce the number.

345.—THE TWO PAWNS.

Call one pawn A and the other B. Now, owing to that optional first move, either pawn may make either 5 or 6 moves in reaching the eighth square. There are, therefore, four cases to be considered: (1) A 6 moves and B 6 moves; (2) A 6 moves and B 5 moves; (3) A 5 moves and B 6 moves; (4) A 5 moves and B 5 moves. In case (1) there are 12 moves, and we may select any 6 of these for A. Therefore 7×8×9×10×11×12 divided by 1×2×3×4×5×6 gives us the number of variations for this case—that is, 924. Similarly for case (2), 6 selections out of 11 will be 462; in case (3), 5 selections out of 11 will also be 462; and in case (4), 5 selections out of 10 will be 252. Add these four numbers together and we get 2,100, which is the correct number of different ways in which the pawns may advance under the conditions. (See No. 270, on p. 204.)

346.—SETTING THE BOARD.

The White pawns may be arranged in 40,320 ways, the White rooks in 2 ways, the bishops in 2 ways, and the knights in 2 ways. Multiply these numbers together, and we find that the White pieces may be placed in 322,560 different