CHAP. VIII. ]
OF REDUCTION.
119
and in these expressions replace, for simplicity,
1
−
x
{\displaystyle \scriptstyle {1-x}}
by
x
¯
{\displaystyle \scriptstyle {\bar {x}}}
,
1
−
y
{\displaystyle \scriptstyle {1-y}}
by
y
¯
{\displaystyle \scriptstyle {\bar {y}}}
, &c., we shall have from the three last equations, (1)
x
y
(
w
z
+
w
¯
z
¯
)
=
0
{\displaystyle \scriptstyle {xy(wz+{\bar {w}}{\bar {z}})=0}}
;(2)
y
z
(
x
w
¯
+
x
¯
w
)
=
0
{\displaystyle \scriptstyle {yz(x{\bar {w}}+{\bar {x}}w)=0}}
;(3)
x
¯
y
¯
=
v
¯
z
¯
{\displaystyle \scriptstyle {{\bar {x}}{\bar {y}}={\bar {v}}{\bar {z}}}}
[ errata 1] ; and from this system we must eliminate
w
{\displaystyle \scriptstyle {w}}
.
Multiplying the second of the above equations by
c
{\displaystyle \scriptstyle {c}}
, and the third by
c
′
{\displaystyle \scriptstyle {c'}}
, and adding the results to the first, we have
x
y
(
w
z
+
w
¯
z
¯
)
+
c
y
z
(
x
w
¯
+
x
¯
w
)
+
c
′
(
x
¯
y
¯
−
w
¯
x
¯
)
=
0
{\displaystyle \scriptstyle {xy(wz+{\bar {w}}{\bar {z}})+cyz(x{\bar {w}}+{\bar {x}}w)+c'({\bar {x}}{\bar {y}}-{\bar {w}}{\bar {x}})=0}}
[ errata 2] . When
w
{\displaystyle \scriptstyle {w}}
is made equal to
1
{\displaystyle \scriptstyle {1}}
, and therefore
w
¯
{\displaystyle \scriptstyle {\bar {w}}}
to
0
{\displaystyle \scriptstyle {0}}
, the first member of the above equation becomes
x
y
z
+
c
x
¯
y
z
+
c
′
x
¯
y
¯
{\displaystyle \scriptstyle {xyz+c{\bar {x}}yz+c'{\bar {x}}{\bar {y}}}}
. And when in the same member
w
{\displaystyle \scriptstyle {w}}
is made
0
{\displaystyle \scriptstyle {0}}
and
w
¯
=
1
{\displaystyle \scriptstyle {{\bar {w}}=1}}
, it becomes
x
y
z
¯
+
c
x
y
z
+
c
′
x
¯
y
¯
−
c
′
z
¯
{\displaystyle \scriptstyle {xy{\bar {z}}+cxyz+c'{\bar {x}}{\bar {y}}-c'{\bar {z}}}}
. Hence the result of the elimination of
w
{\displaystyle \scriptstyle {w}}
may be expressed in the form (4)
(
x
y
z
+
c
x
¯
y
z
+
c
′
x
¯
y
¯
)
(
x
y
z
¯
+
c
x
y
z
+
c
′
x
¯
y
¯
−
c
′
z
¯
)
=
0
{\displaystyle \scriptstyle {(xyz+c{\bar {x}}yz+c'{\bar {x}}{\bar {y}})(xy{\bar {z}}+cxyz+c'{\bar {x}}{\bar {y}}-c'{\bar {z}})=0}}
; and from this equation
x
{\displaystyle \scriptstyle {x}}
is to be determined.
Were we now to proceed as in former instances, we should multiply together the factors in the first member of the above equation; but it may be well to show that such a course is not at all necessary. Let us develop the first member of (4) with reference to
x
{\displaystyle \scriptstyle {x}}
, the symbol whose expression is sought, we find
y
z
(
y
z
¯
+
c
y
z
−
c
′
z
¯
)
x
+
(
c
y
z
+
c
′
y
¯
)
(
c
′
y
¯
−
c
′
z
¯
)
(
1
−
x
)
=
0
{\displaystyle \scriptstyle {yz(y{\bar {z}}+cyz-c'{\bar {z}})x+(cyz+c'{\bar {y}})(c'{\bar {y}}-c'{\bar {z}})(1-x)=0}}
; or,
c
y
z
x
+
(
c
y
z
+
c
′
y
¯
)
(
c
′
y
¯
−
c
′
z
¯
)
(
1
−
x
)
=
0
{\displaystyle \scriptstyle {cyzx+(cyz+c'{\bar {y}})(c'{\bar {y}}-c'{\bar {z}})(1-x)=0}}
; whence we find,
x
=
(
c
y
z
+
c
′
y
¯
)
(
c
′
y
¯
−
c
′
z
¯
)
(
c
y
z
+
c
′
y
¯
)
(
c
′
y
¯
−
c
′
z
¯
)
−
c
y
z
{\displaystyle \scriptstyle {x={\frac {(cyz+c'{\bar {y}})(c'{\bar {y}}-c'{\bar {z}})}{(cyz+c'{\bar {y}})(c'{\bar {y}}-c'{\bar {z}})-cyz}}}}
; and developing the second member with respect to
y
{\displaystyle \scriptstyle {y}}
and
z
{\displaystyle \scriptstyle {z}}
,
↑ Correction:
x
¯
y
¯
=
v
¯
z
¯
{\displaystyle \scriptstyle {{\bar {x}}{\bar {y}}={\bar {v}}{\bar {z}}}}
should be amended to
x
¯
y
¯
=
w
¯
z
¯
{\displaystyle \scriptstyle {{\bar {x}}{\bar {y}}={\bar {w}}{\bar {z}}}}
: detail
↑ Correction:
x
y
(
w
z
+
w
¯
z
¯
)
+
c
y
z
(
x
w
¯
+
x
¯
w
)
+
c
′
(
x
¯
y
¯
−
w
¯
x
¯
)
=
0
{\displaystyle \scriptstyle {xy(wz+{\bar {w}}{\bar {z}})+cyz(x{\bar {w}}+{\bar {x}}w)+c'({\bar {x}}{\bar {y}}-{\bar {w}}{\bar {x}})=0}}
should be amended to
x
y
(
w
z
+
w
¯
z
¯
)
+
c
y
z
(
x
w
¯
+
x
¯
w
)
+
c
′
(
x
¯
y
¯
−
w
¯
z
¯
)
=
0
{\displaystyle \scriptstyle {xy(wz+{\bar {w}}{\bar {z}})+cyz(x{\bar {w}}+{\bar {x}}w)+c'({\bar {x}}{\bar {y}}-{\bar {w}}{\bar {z}})=0}}
: detail