Jump to content

Page:Animal Cloning; A Risk Assessment (2008).pdf/27

From Wikisource
This page has been proofread, but needs to be validated.
Chapter I: Executive Summary
11

F. Food Consumption Risks (Chapter VI)

1. Two-Pronged Approach to Identifying and Characterizing Food Consumption Risks

In order to determine whether epigenetically-caused subtle hazards pose food consumption risks, CVM has developed a two-pronged approach. The first component, the Critical Biological Systems Approach (CBSA), incorporates a systematic review of the health of the animal clone or its progeny. Its role in the evaluation of food consumption risks is premised on the hypothesis that a healthy animal is likely to produce safe food products. It accepts that at this time, SCNT is a biologically imprecise and inefficient process, but recognizes that animals are capable of biological repair or adaptation. The cumulative nature of the CBSA allows for the incorporation of both favorable and unfavorable outcomes. The former, provided that all other measures appear to be normal, will result in the finding that the clone is likely to produce edible products that pose no food consumption risks; the latter implies that clones with anomalies are likely to be considered unsuitable for food. The second component, the Compositional Analysis Method, assumes that food products from healthy animal clones and their progeny that are not materially different from corresponding products from conventional animals pose no additional risks. It relies on the comparison of individual components of edible products, and the identification of appropriate comparators.

Assessing the safety of food products from animal clones and their progeny[1] is best accomplished by using both approaches: prospectively drawing on our knowledge of biological systems in development and maturation, and in retrograde, from an analysis of food products. Subtle hazards and potential risks that may be posed by animal clones must, however, be considered in the context of other mutations and epigenetic changes that occur in all food animal populations. No adverse outcomes have been noted in clones that have not also been observed in animals derived via other ARTs or natural mating that enter the food supply unimpeded.

2. Conclusions Regarding Potential Food Consumption Risks

Based on this review of the body of data on the health of animal clones, the composition of meat and milk from those animals and corresponding information on clone progeny, CVM has drawn the following conclusions:

a. Cattle Clones


  1. Although milk from clones might be marketed for human consumption, CVM anticipates that relatively few animal clones will enter the food supply as meat (e.g., if culled from the herd due to injury or senescence). Relative to clones, it is more likely the progeny of clones will be used to produce meat and milk for human consumption.

Animal Cloning: A Risk Assessment