we have
∂
(
x
′
,
y
′
,
z
′
)
∂
(
x
,
y
,
z
)
=
θ
[
∂
t
′
∂
t
{
(
∂
x
′
∂
x
)
2
+
(
∂
y
′
∂
x
)
2
+
(
∂
z
′
∂
x
)
2
−
(
∂
t
′
∂
x
)
2
}
−
∂
x
′
∂
x
{
∂
x
′
∂
x
∂
x
′
∂
t
+
∂
y
′
∂
x
∂
y
′
∂
t
+
∂
z
′
∂
x
∂
z
′
∂
t
−
∂
t
′
∂
x
∂
t
′
∂
t
}
]
{\displaystyle {\begin{array}{ll}{\frac {\partial (x',y',z')}{\partial (x,y,z)}}=&\theta \left[{\frac {\partial t'}{\partial t}}\left\{\left({\frac {\partial x'}{\partial x}}\right)^{2}+\left({\frac {\partial y'}{\partial x}}\right)^{2}+\left({\frac {\partial z'}{\partial x}}\right)^{2}-\left({\frac {\partial t'}{\partial x}}\right)^{2}\right\}\right.\\\\&\qquad \left.-{\frac {\partial x'}{\partial x}}\left\{{\frac {\partial x'}{\partial x}}{\frac {\partial x'}{\partial t}}+{\frac {\partial y'}{\partial x}}{\frac {\partial y'}{\partial t}}+{\frac {\partial z'}{\partial x}}{\frac {\partial z'}{\partial t}}-{\frac {\partial t'}{\partial x}}{\frac {\partial t'}{\partial t}}\right\}\right]\end{array}}}
or
∂
(
x
′
,
y
′
,
z
′
)
∂
(
x
,
y
,
z
)
=
θ
∂
t
′
∂
t
[
(
∂
x
′
∂
x
)
2
+
(
∂
y
′
∂
x
)
2
+
(
∂
z
′
∂
x
)
2
−
(
∂
t
′
∂
x
)
2
]
.
{\displaystyle {\frac {\partial (x',y',z')}{\partial (x,y,z)}}=\theta {\frac {\partial t'}{\partial t}}\left[\left({\frac {\partial x'}{\partial x}}\right)^{2}+\left({\frac {\partial y'}{\partial x}}\right)^{2}+\left({\frac {\partial z'}{\partial x}}\right)^{2}-\left({\frac {\partial t'}{\partial x}}\right)^{2}\right].}
(A)
We also have
∂
(
x
′
,
y
′
,
z
′
,
t
′
)
∂
(
x
,
y
,
z
,
t
)
=
∂
(
y
′
,
z
′
)
∂
(
y
,
z
)
∂
(
x
′
,
t
′
)
∂
(
x
,
t
)
+
∂
(
z
′
,
x
′
)
∂
(
y
,
z
)
∂
(
y
′
,
t
′
)
∂
(
x
,
t
)
+
…
=
θ
[
{
∂
(
x
′
,
t
′
)
∂
(
x
,
t
)
}
2
+
{
∂
(
y
′
,
t
′
)
∂
(
x
,
t
)
}
2
+
⋯
−
{
∂
(
y
′
,
z
′
)
∂
(
x
,
t
)
}
2
−
…
]
=
−
θ
[
(
∂
x
′
∂
x
)
2
+
(
∂
y
′
∂
x
)
2
+
(
∂
z
′
∂
x
)
2
−
(
∂
t
′
∂
x
)
2
]
×
{
(
∂
x
′
∂
t
)
2
+
(
∂
y
′
∂
t
)
2
+
(
∂
z
′
∂
t
)
2
−
(
∂
t
′
∂
t
)
2
}
−
{
∂
x
′
∂
x
∂
x
′
∂
t
+
∂
y
′
∂
x
∂
y
′
∂
t
+
∂
z
′
∂
x
∂
z
′
∂
t
−
∂
t
′
∂
x
∂
t
′
∂
t
}
{\displaystyle {\begin{array}{ll}{\frac {\partial (x',y',z',t')}{\partial (x,y,z,t)}}&={\frac {\partial (y',z')}{\partial (y,z)}}{\frac {\partial (x',t')}{\partial (x,t)}}+{\frac {\partial (z',x')}{\partial (y,z)}}{\frac {\partial (y',t')}{\partial (x,t)}}+\dots \\\\&=\theta \left[\left\{{\frac {\partial (x',t')}{\partial (x,t)}}\right\}^{2}+\left\{{\frac {\partial (y',t')}{\partial (x,t)}}\right\}^{2}+\dots -\left\{{\frac {\partial (y',z')}{\partial (x,t)}}\right\}^{2}-\dots \right]\\\\&=-\theta \left[\left({\frac {\partial x'}{\partial x}}\right)^{2}+\left({\frac {\partial y'}{\partial x}}\right)^{2}+\left({\frac {\partial z'}{\partial x}}\right)^{2}-\left({\frac {\partial t'}{\partial x}}\right)^{2}\right]\\\\&\qquad \times \left\{\left({\frac {\partial x'}{\partial t}}\right)^{2}+\left({\frac {\partial y'}{\partial t}}\right)^{2}+\left({\frac {\partial z'}{\partial t}}\right)^{2}-\left({\frac {\partial t'}{\partial t}}\right)^{2}\right\}\\\\&\qquad -\left\{{\frac {\partial x'}{\partial x}}{\frac {\partial x'}{\partial t}}+{\frac {\partial y'}{\partial x}}{\frac {\partial y'}{\partial t}}+{\frac {\partial z'}{\partial x}}{\frac {\partial z'}{\partial t}}-{\frac {\partial t'}{\partial x}}{\frac {\partial t'}{\partial t}}\right\}\end{array}}}
Therefore
∂
(
x
′
,
y
′
,
z
′
,
t
′
)
∂
(
x
,
y
,
z
,
t
)
=
−
θ
[
(
∂
x
′
∂
x
)
2
+
(
∂
y
′
∂
x
)
2
+
(
∂
z
′
∂
x
)
2
−
(
∂
t
′
∂
x
)
2
]
×
[
(
∂
x
′
∂
t
)
2
+
(
∂
y
′
∂
t
)
2
+
(
∂
z
′
∂
t
)
2
−
(
∂
t
′
∂
t
)
2
]
{\displaystyle {\begin{array}{ll}{\frac {\partial (x',y',z',t')}{\partial (x,y,z,t)}}=&-\theta \left[\left({\frac {\partial x'}{\partial x}}\right)^{2}+\left({\frac {\partial y'}{\partial x}}\right)^{2}+\left({\frac {\partial z'}{\partial x}}\right)^{2}-\left({\frac {\partial t'}{\partial x}}\right)^{2}\right]\\\\&\qquad \times \left[\left({\frac {\partial x'}{\partial t}}\right)^{2}+\left({\frac {\partial y'}{\partial t}}\right)^{2}+\left({\frac {\partial z'}{\partial t}}\right)^{2}-\left({\frac {\partial t'}{\partial t}}\right)^{2}\right]\end{array}}}
This gives us the relation[ 1]
−
∂
(
x
′
,
y
′
,
z
′
)
∂
(
x
,
y
,
z
)
[
(
∂
x
′
∂
t
)
2
+
(
∂
y
′
∂
t
)
2
+
(
∂
z
′
∂
t
)
2
−
(
∂
t
′
∂
t
)
2
]
=
∂
t
′
∂
t
∂
(
x
′
,
y
′
,
z
′
,
t
′
)
∂
(
x
,
y
,
z
,
t
)
,
{\displaystyle -{\frac {\partial (x',y',z')}{\partial (x,y,z)}}\left[\left({\frac {\partial x'}{\partial t}}\right)^{2}+\left({\frac {\partial y'}{\partial t}}\right)^{2}+\left({\frac {\partial z'}{\partial t}}\right)^{2}-\left({\frac {\partial t'}{\partial t}}\right)^{2}\right]={\frac {\partial t'}{\partial t}}{\frac {\partial (x',y',z',t')}{\partial (x,y,z,t)}},}
(B)
which holds for any spherical wave transformation.
We shall now introduce the further restriction that the inequality
(
d
x
′
)
2
+
(
d
y
′
)
2
+
(
d
z
′
)
2
<
(
d
t
′
)
2
{\displaystyle (dx')^{2}+(dy')^{2}+(dz')^{2}<(dt')^{2}}
is a consequence of
(
d
x
)
2
+
(
d
y
)
2
+
(
d
z
)
2
<
(
d
t
)
2
{\displaystyle (dx)^{2}+(dy)^{2}+(dz)^{2}<(dt)^{2}}
This means that, if a particle is moving with a velocity less than that of light in one system of coordinates, it is also moving with a velocity less than that of light in the transformed system.
↑ I am indebted to a referee for calling my attention to this relation and the necessity of distinguishing between the two types of transformation.