Samples of
n
{\displaystyle n}
individuals are drawn out of a population distributed normally, to find an equation which shall represent the frequency of the standard deviations of these samples.
If
s
{\displaystyle s}
be the standard deviation found from a sample
x
1
x
2
.
.
.
x
n
{\displaystyle x_{1}x_{2}...x_{n}}
(all these being measured from the mean of the population), then
s
2
=
S
(
x
1
2
)
n
−
(
S
(
x
1
)
n
)
2
=
S
(
x
1
2
)
n
−
S
(
x
1
2
)
n
2
−
2
S
(
x
1
x
2
)
n
2
{\displaystyle s^{2}={\frac {S(x_{1}^{2})}{n}}-\left({\frac {S(x_{1})}{n}}\right)^{2}={\frac {S(x_{1}^{2})}{n}}-{\frac {S(x_{1}^{2})}{n^{2}}}-{\frac {2S(x_{1}x_{2})}{n^{2}}}}
.
Summing for all samples and dividing by the number of samples we get the mean value of
s
2
{\displaystyle s^{2}}
which we will write
s
¯
2
{\displaystyle {\bar {s}}^{2}}
.
s
¯
2
=
n
μ
2
n
−
n
μ
2
n
2
=
μ
2
(
n
−
1
)
n
{\displaystyle {\bar {s}}^{2}={\frac {n\mu _{2}}{n}}-{\frac {n\mu _{2}}{n^{2}}}={\frac {\mu _{2}(n-1)}{n}}}
,
where
μ
2
{\displaystyle \mu _{2}}
is the second moment coefficient in the original normal distribution of
x
{\displaystyle x}
: since
x
1
{\displaystyle x_{1}}
,
x
2
{\displaystyle x_{2}}
, etc., are not correlated and the distribution is normal, products involving odd powers of
x
1
{\displaystyle x_{1}}
vanish on summing, so that
2
S
(
x
1
x
2
)
n
2
{\displaystyle {\frac {2S(x_{1}x_{2})}{n^{2}}}}
is equal to
0
{\displaystyle 0}
.
If
M
R
′
{\displaystyle M'_{R}}
represent the
R
{\displaystyle R}
th moment coefficient of the distribution of
s
2
{\displaystyle s^{2}}
about the end of the range where
s
2
=
0
{\displaystyle s^{2}=0}
,
M
1
′
=
μ
2
(
n
−
1
)
n
{\displaystyle M'_{1}=\mu _{2}{\frac {(n-1)}{n}}}
.
Again
s
4
{\displaystyle s^{4}}
=
{
S
(
x
1
2
)
n
−
(
S
(
x
1
)
n
)
2
}
2
{\displaystyle =\left\{{\frac {S(x_{1}^{2})}{n}}-\left({\frac {S(x_{1})}{n}}\right)^{2}\right\}^{2}}
=
(
S
(
x
1
2
)
n
)
2
−
2
S
(
x
1
2
)
n
(
S
(
x
1
)
n
)
2
+
(
S
(
x
1
)
n
)
4
{\displaystyle =\left({\frac {S(x_{1}^{2})}{n}}\right)^{2}-{\frac {2S(x_{1}^{2})}{n}}\left({\frac {S(x_{1})}{n}}\right)^{2}+\left({\frac {S(x_{1})}{n}}\right)^{4}}
=
S
(
x
1
4
)
n
2
+
2
S
(
x
1
2
x
2
2
)
n
2
−
2
S
(
x
1
4
)
n
3
−
4
S
(
x
1
2
x
2
2
)
n
3
+
S
(
x
1
4
)
n
4
{\displaystyle ={\frac {S(x_{1}^{4})}{n^{2}}}+{\frac {2S(x_{1}^{2}x_{2}^{2})}{n^{2}}}-{\frac {2S(x_{1}^{4})}{n^{3}}}-{\frac {4S(x_{1}^{2}x_{2}^{2})}{n^{3}}}+{\frac {S(x_{1}^{4})}{n^{4}}}}
+
6
S
(
x
1
2
x
2
2
)
n
4
+
{\displaystyle +{\frac {6S(x_{1}^{2}x_{2}^{2})}{n^{4}}}+}
other terms involving odd powers of
x
{\displaystyle x}
, etc., which will vanish on summation.
Now
S
(
x
1
4
)
{\displaystyle S(x_{1}^{4})}
has
n
{\displaystyle n}
terms but
S
(
x
1
2
x
2
2
)
{\displaystyle S(x_{1}^{2}x_{2}^{2})}
has
1
2
n
(
n
−
1
)
{\displaystyle {\frac {1}{2}}n(n-1)}
, hence summing for all samples and dividing by the number of samples we get
M
2
′
{\displaystyle M'_{2}}
=
μ
4
n
+
μ
2
2
(
n
−
1
)
n
−
2
μ
4
n
2
−
2
μ
2
2
(
n
−
1
)
n
2
+
μ
4
n
3
+
2
μ
2
2
(
n
−
1
)
n
3
{\displaystyle ={\frac {\mu _{4}}{n}}+\mu _{2}^{2}{\frac {(n-1)}{n}}-{\frac {2\mu _{4}}{n^{2}}}-2\mu _{2}^{2}{\frac {(n-1)}{n^{2}}}+{\frac {\mu _{4}}{n^{3}}}+2\mu _{2}^{2}{\frac {(n-1)}{n^{3}}}}
=
μ
4
n
{
n
2
−
2
n
−
1
}
+
μ
2
2
n
3
(
n
−
1
)
{
n
2
−
2
n
+
3
}
{\displaystyle ={\frac {\mu _{4}}{n}}\{n^{2}-2n-1\}+{\frac {\mu _{2}^{2}}{n^{3}}}(n-1)\{n^{2}-2n+3\}}
.
Now since the distribution of
x
{\displaystyle x}
is normal,
μ
4
=
3
μ
2
2
{\displaystyle \mu _{4}=3\mu _{2}^{2}}
, hence
M
2
′
=
μ
2
2
(
n
−
1
)
n
3
{
3
n
−
3
+
n
2
−
2
n
+
3
}
=
μ
2
2
(
n
−
1
)
(
n
+
1
)
n
2
{\displaystyle M'_{2}=\mu _{2}^{2}{\frac {(n-1)}{n^{3}}}\{3n-3+n^{2}-2n+3\}=\mu _{2}^{2}{\frac {(n-1)(n+1)}{n^{2}}}}
.