Page:Cantortransfinite.djvu/135

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
116
THE FOUNDING OF THE THEORY

on the former in such a way that and are corresponding elements. For the lowest element in rank of the first, must, in the process of imaging, be correlated to the lowest element of the second, the next after in rank to , the next after , and so on. [500] Every other bi-univocal correspondence of the two equivalent aggregates and is not an "imaging" in the sense which we have fixed above for the theory of types.

On the other hand, let us take an ordered aggregate of the form

,

where represents all positive and negative finite integers, including , and where likewise

.

This aggregate has no lowest and no highest element in rank. Its type is, by the definition of a sum given in §8,

.

It is similar to itself in an infinity of ways. For let us consider an aggregate of the same type

,

where

.

Then the two ordered aggregates can be so imaged on one another that, if we understand by a definite one of the numbers , to the element of