Page:Cantortransfinite.djvu/138

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
OF TRANSFINITE NUMBERS
119

§8
Addition and Multiplication of Ordinal Types

The union-aggregate of two aggregates and can, if and are ordered, be conceived as an ordered aggregate in which the relations of precedence of the elements of among themselves as well as the relations of precedence of the elements of among themselves remain the same as in or respectively, and all elements of have a lower rank than all the elements of . If and are two other ordered aggregates, and , [502] then ; so the ordinal type of depends only on the ordinal types and . Thus, we define:

(1)
.

In the sum we call the "augend" and the "addend."

For any three types we easily prove the associative law:

(2)
.

On the other hand, the commutative law is not valid, in general, for the addition of types. We see this by the following simple example.

If is the type, already mentioned in §7, of the well-ordered aggregate

,