264
APPENDIX IV. § 1.
Euclid | Legendre | Cuthbertson | Henrici | |||
Page | Page | Page
| ||||
13Th 14Th„ 15Th„ 16 (a)Th„ (b)Th„ 17Th„ 18Th„ 19Th„ 20Th„ 21Th„ |
Th2 4 5 14 14„ 8 9 |
7 9 „ 15 „ 11 12 |
Th9 10 6 13 „ „ 14 15 16 17 |
18 19 14 22 „ 23 24 25 26 27 |
Th Th Th„ Th„ |
62 108 „ 109 |
II | ||||||
22Th 23Th„ |
Pr4 |
51 |
PrD E |
30 31 |
||
I | ||||||
24Th 25Th„ 26 (a)Th„ (b)Th„ |
Th10 Sch 7 |
12 13 11 |
Th18 19 3 25 Cor |
28 29 6 43 |
Th Th„ Th„ |
133 „ 129 |
27Th 28 (a)Th„ (b)Th„ 29 (a)Th„ (b)Th„ (c)Th„ 30Th |
Th24 Sch Sch„ 22 24 Cor 2 Sch 24 25 |
28 „ 25 28 „ „ 29 |
Th20 20„ 20„ 21 21„ 21„ 22 |
36 37 „ 38 „ 39 40 |
Th Th„ Th„ Th„ Th„ Th„ Th„ |
71 „ „ „ „ „ 72 |
II | ||||||
31Pr | Pr6 | 52 | Lemma | 34 |