Let me give you a few instances of conflicting logical sequences in Geometry. Legendre proves my Prop. 5 by Prop. 8, 18 by 19, 19 by 20, 27 by 28, 29 by 32. Cuthbertson proves 37 by 41. Reynolds proves 5 by 20. When Mr. Wilson has produced similarly conflicting sequences in the manuals of algebra or chemistry, we may then compare the subjects: till then, his remark is quite irrelevant to the question.
Min. I do not think he will be able to do so: indeed there are very few logical chains at all in those subjects—most of the Propositions being proved from first principles. I think I may grant at once that it is essential to have one definite logical sequence, however many manuals we employ: to use the words of another of your Rivals, Mr. Cuthbertson (Pref. p. viii.), 'enormous inconvenience would arise in conducting examinations with no recognised sequence of Propositions.' This however applies to logical sequences only, such as your Props. 13, 15, 16, 18, 19, 20, 21, which form a continuous chain. There are many Propositions whose place in a manual would be partly arbitrary. Your Prop. 8, for instance, is not wanted till we come to Prop. 48, so that it might occupy any intermediate position, without involving risk of circular argument.
Euc. Now, in order to secure this uniform logical sequence, we should require to know, as to any particular Proposition, what other Propositions were its logical descendants, so that we might avoid using any of these in proving it?
Min. Exactly so.