bulk to the solid. Lardner says, precisely the same process occurs when a solid is partially immersed: the quantity of liquid displaced, in this case, equalling the portion of the solid which is immersed, and the rise of the level being in proportion.
"Suppose a solid held above the surface of a liquid and partially immersed: a portion of the liquid is displaced, and the level of the liquid rises. But, by this rise of level, a little bit more of the solid is of course immersed, and so there is a new displacement of a second portion of the liquid, and a consequent rise of level. Again, this second rise of level causes a yet further immersion, and by consequence another displacement of liquid and another rise. It is self-evident that this process must continue till the entire solid is immersed, and that the liquid will then begin to immerse whatever holds the solid, which, being connected with it, must for the time be considered a part of it. If you hold a stick, six feet long, with its end in a tumbler of water, and wait long enough, you must eventually be immersed. The question as to the source from which the water is supplied—which belongs to a high branch of mathematics, and is therefore beyond our present scope—does not apply