difference of circle readings for these positions, equal to twice the critical angle, was found to be 58°. The critical angle for glass is therefore 29°.
μ = 2·04 .................... (2).
Having thus obtained the value of the index, I tried to find whether it would be possible to obtain approximately good results by measuring the deviation of the refracted ray. In the first series of experiments, I used for this purpose a semi-cylinder, with the radiator at its principal focus (the cylindrical surface being next to the radiator), so that the emergent rays were parallel. On trying to find the angle of refraction corresponding to a given angle of incidence, I could obtain no definite reading, as the receiver continued to respond, when moved through five or six degrees on either side of the mean position where the response was strongest. It must be remembered that owing to the finite length of the waves, there is no well-defined geometrical limit to either the ray or the shadow. There is, however, a position for maximum effect, and it is possible with some difficulty so to adjust the sensitiveness of the receiver that it shall only respond to the maximum intensity.
Another troublesome source of uncertainty is due to the action of the tube which encloses the receiver. When a slanting ray strikes the inner edge of the tube, it is reflected and thrown on to the delicate receiver. Unfortunately it is difficult to find a substance which is as absorbent for electric radiation as lamp-black is for light. Lamp-black in the case of electric radiation produces copious reflection. I have tried layers of metallic filings, powdered graphite, and other substances, but they all fail to produce complete absorption.