state of unstable equilibrium, for a brief time, and then rushes down again into the mineral kingdom. The animal tissues, being formed of albuminoid matter, are short-lived; the parts are constantly dying and decomposing; the law of death necessitates the law of reproduction; decomposition necessitates repair, and therefore food for repair. But the force by which repair is effected was for them, and for many physiologists now, underived, innate. But the doctrine maintained by me in the paper referred to is, that the decomposition of the tissues creates not only the necessity, but also the force, of repair.
Suppose, in the first place, a carnivorous animal uses just enough food to repair the tissues, and no more—say an ounce. Then I say the ounce of tissue decayed not only necessitates the ounce of albuminous food for repair, but the decomposition sets free the force by which the repair is effected. But it will be perhaps objected that the force would all be consumed in repair, and none left for animal activity of all kinds. I answer: it would not all be used up in repair, for, the food being already albuminoid, there is probably little expenditure of force necessary to change it into tissue; while, on the other hand, the force generated by the decomposition of tissue into CO2, H2O, and urea, is very great—the ascensive change is small, the descensive change is great. The decomposition of one ounce of albuminous tissue into