will pierce through four, or nea,rly four, times as many deal boards as the ball with only a single velocity—in other words, they will tell us, in mathematical language, that the energy varies as the square of the velocity.
Definition of Work.
23. And now, before proceeding further, it will be necessary to tell our readers how to measure work in a strictly scientific manner. We have defined energy to be the power of doing work, and although every one has a general notion of what is meant by work, that notion may not be sufficiently precise for the purpose of this volume. How, then, are we to measure work? Fortunately, we have not far to go for a practical means of doing this. Indeed, there is a force at hand which enables us to accomplish this measurement with the greatest precision, and this force is gravity. Now, the first operation in any kind of numerical estimate is to fix upon our unit or standard. Thus we say a rod is so many inches long, or a road so many miles long. Here an inch and a mile are chosen as our standards. In like manner, we speak of so many seconds, or minutes, or hours, or days, or years, choosing that standard of time or duration which is most convenient for our purpose. So in like manner we must choose our unit of work, but in order to do so we must first of all choose our units of weight and of length, and for these we will take the kilogramme and the metre, these being the units of the metrical system. The kilo-