measure the energy of a moving body by the extent to which it would bend a powerful spring or resist the attraction of a powerful magnet, or, in fine, we might make use of the force which best suits our purpose. If this force be a constant one, we must measure the energy of the moving body by the space which it is able to traverse against the action of the force—just as, in the case of gravity, we measured the energy of the body by the space through which it was able to raise itself against its own weight.
33. We must, of course, bear in mind that if this force be more powerful than gravity, a body moved a short distance against it will represent the expenditure of as much energy as if it were moved a greater distance against gravity. In fine, we must take account both of the strength of the force and of the distance moved over by the body against it before we can estimate in an accurate matter the work which has been done.