over all the pulleys, and is ultimately attached, by its other extremity, to a hook in the upper or fixed block. The weight W is, on the other hand, attached to the lower or moveable block, and rises with it. Let us suppose that the pulleys are without weight and the cords without friction, and that W is supported by six cords, as in the figure. Now, when there is equilibrium in this machine, it is well known that W will be equal to six times P; that is to say, a power of one kilogramme will, in such a machine, balance or support a weight of six kilogrammes. If P be increased a single grain more, it will overbalance W, and P will descend, while W will begin to rise. In such a case, after P has descended, say six metres, its weight being, say, one kilogramme, it has lost a quantity of energy of position equal to six units, since it is at a lower level by six metres than it was before. We have, in fact, expended upon our machine six units of energy. Now, what return have we received for this expenditure? Our return is clearly the rise of W, and mechanicians will tell us that in this case W will have risen one metre.
But the weight of W is six kilogrammes, and this having been raised one metre represents an energy of position equal to six. We have thus spent upon our machine, in the fall of P, an amount of energy equal to six units, and obtained in the rise of W an equivalent amount equal to six units also. We have, in truth, neither gained nor lost energy, but simply changed it into a form more convenient for our use.