all attempts to deform it; but in all cases it is clearly manifest that work must be spent upon the body, and the force of elasticity must be encountered and overcome throughout a certain space before any sensible deformation can take place.
Force of Cohesion.
68. Let us now leave the forces which animate large masses of matter, and proceed to discuss those which subsist between the smaller particles of which these large masses are composed. And here we must say one word more about molecules and atoms, and the distinction we feel ourselves entitled to draw between these very small bodies, even although we shall never be able to see either the one or the other.
In our first chapter (Art. 7) we supposed the continual sub-division of a grain of sand until we had arrived at the smallest entity retaining all the properties of sand—this we called a molecule, and nothing smaller than this is entitled to be called sand. If we continue this sub-division further, the molecule of sand separates itself into its chemical constituents, consisting of silicon on the one side, and oxygen on the other. Thus we arrive at last at the smallest body which can call itself silicon, and the smallest which can call itself oxygen, and we have no reason to suppose that either of these is capable of sub-division into something else, since we regard oxygen and silicon as elementary or simple bodies. Now,