tricity in C, without, however, diminishing the amount of our original stock. Now, this distant action or help, rendered by the original electricity in separating that of B and C, is called electric induction.
88. The experiment may, however, he performed in a somewhat different manner—we may allow B and C to remain together, and gradually push them nearer to A. As B and C approach A, the separation of their electricities will become greater and greater, until, when A and B are only divided by a small thickness of air, the two opposite electricities then accumulated will have sufficient strength to rush together through the air, and unite with each, other by means of a spark.
89. The principle of induction may be used with advantage, when it is wished to accumulate a large quantity of electricity.
Fig. 7.
In this case, an instrument called a Leyden jar is very frequently employed. It consists of a glass jar, coated inside and outside with tin foil, as in Fig. 7. A brass rod, having a knob at the end of it, is connected metallically with the inside coating, and is kept in its place by being passed through a cork, which covers the mouth of the jar. We have thus two metallic coatings which are not electrically connected with one another. Now, in order to charge a jar of this kind, let the outside coating be con-