80
THE CONSERVATION OF ENERGY.
Heat Motion.
110. (C.) Coming now to molecular or invisible energy, we have, in the first place, that motion of the molecules of bodies which we term heat. A better term would be absorbed heat, to distinguish it from radiant heat, which is a very different thing. That peculiar motion which is imparted by heat when absorbed into a body is, therefore, one variety of molecular energy.
Molecular Separation.
(D.) Analagous to this is that effect of heat which represents position rather than actual motion. For part of the energy of absorbed heat is spent in pulling asunder the molecules of the body under the attractive force which binds them together (Art. 73), and thus a store of energy of position is laid up, which disappears again after the body is cooled.
Atomic or Chemical Separation.
111. (E.) The two previous varieties of energy may be viewed as associated with molecules rather than with atoms, and with the force of cohesion rather than with that of chemical affinity. Proceeding now to atomic force, we have a species of energy of position due to the