those of mathematics; though I shall include those upon the possibility and objective validity a priori, of principles of the mathematical science, which, consequently, are to be looked upon as the principle of these, and which proceed from conceptions to intuition, and not from intuition to conceptions.
In the application of the pure conceptions of the understanding to possible experience, the employment of their synthesis is either mathematical or dynamical, for it is directed partly on the intuition alone, partly on the existence of a phenomenon. But the a priori conditions of intuition are in relation to a possible experience absolutely necessary, those of the existence of objects of a possible empirical intuition are in themselves contingent. Hence the principles of the mathematical use of the categories will possess a character of absolute necessity, that is, will be apodeictic; those, on the other hand, of the dynamical use, the character of an a priori necessity indeed, but only under the condition of empirical thought in an experience, therefore only mediately and indirectly. Consequently they will not possess that immediate evidence which is peculiar to the former, although their application to experience does not, for that reason, lose its truth and certitude. But of this point we shall be better able to judge at the conclusion of this system of principles.
The table of the categories is naturally our guide to the table of principles, because these are nothing else than rules for the objective employment of the former. Accordingly, all principles of the pure understanding are:
1 Axioms of Intuition |
||
2 Anticipations of Perception |
3 Analogies of Experience | |
4 Postulates of Empirical Thought in general |
These appellations I have chosen advisedly, in order that we might not lose sight of the distinctions in respect of the