that sheep and goats are specially mountain and rock-loving animals may be explained by their being a later modification, since the divided hoof once formed is evidently well adapted to secure a firm footing on rugged and precipitous ground, although it could hardly have been first developed in such localities. Mr. Cope thus concludes: "Certain it is that the length of the bones in the feet of the ungulate orders has a direct relation to the dryness of the ground they inhabit, and the possibility of speed which their habit permits them or necessarily imposes on them."[1]
If there is any truth in the explanation here briefly summarised, it must entirely depend on the fact of individual modifications thus produced being hereditary, and we yet await the proof of this. In the meantime it is clear that the very same results could have been brought about by variation and natural selection. For the toes, like all other organs, vary in size and proportions, and in their degree of union or separation; and if in one group of animals it was beneficial to have the middle toe larger and longer, and in another set to have the two middle toes of the same size, nothing can be more certain than that these particular modifications would be continuously preserved, and the very results we see ultimately produced.
The oft-repeated objections that the cause of variations is unknown, that there must be something to determine variations in the right direction; that "natural selection includes no actively progressive principle, but must wait for the development of variation, and then, after securing the survival of the best, wait again for the best to project its own variations for selection," we have already sufficiently answered by showing that variation—in abundant or typical species—is always present in ample amount; that it exists in all parts and organs; that these vary, for the most part, independently, so that any required combination of variations can be secured; and finally, that all variation is necessarily either in excess or defect of the mean condition, and that, consequently, the right or favourable variations are so frequently present that the unerring power of natural selection never wants materials to work upon.
- ↑ Origin of the Fittest, p. 374.