Page:Dialogues Concerning Two New Sciences (1914).djvu/55

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
FIRST DAY
27

which our discussion has suggested to you; for since we are free from urgent business there will be abundant time to pursue the topics already mentioned; and in particular the objections raised by Simplicio ought not in any wise to be neglected.

Salv. Granted, since you so desire. The first question was, How can a single point be equal to a line? Since I cannot do more at present I shall attempt to remove, or at least diminish, one improbability by introducing a similar or a greater one, just as sometimes a wonder is diminished by a miracle.[1]

And this I shall do by showing you two equal surfaces, together with two equal solids located upon these same surfaces as bases, all four of which diminish continuously and uniformly in such a way that their remainders always preserve equality among themselves, and finally both the surfaces and the solids terminate their previous constant equality by degenerating, the one solid and the one surface into a very long line, the other solid and the other surface into a single point; that is, the latter to one point, the former to an infinite number of points.

(74)

Sagr. This proposition appears to me wonderful, indeed; but let us hear the explanation and demonstration.

Salv. Since the proof is purely geometrical we shall need a figure. Let AFB be a semicircle with center at C; about it describe the rectangle ADEB and from the center draw the straight lines CD and CE to the points D and E. Imagine the radius CF to be drawn perpendicular to either of the lines AB or DE, and the entire figure to rotate about this radius as an axis. It is clear that the rectangle ADEB will thus describe a cylinder, the semicircle AFB a hemisphere, and the triangle CDE, a cone. Next let us remove the hemisphere but leave the cone and the rest of the cylinder, which, on account of its shape, we will call a "bowl." First we shall prove that the bowl and the cone are equal; then we shall show that a plane drawn parallel to the circle which forms the base of the bowl and which has the line DE for diameter and F for a center—a plane whose trace is GN—cuts the bowl in the points G, I, O, N, and the cone in the points H, L, so that the part of the cone indicated by CHL is always equal to

  1. Cf. p. 30 below. [Trans.]